# Nonlinear least-squares data fit

3 visualizaciones (últimos 30 días)
MOHAMED ABDULAZIM el 14 de Ag. de 2020
Comentada: Star Strider el 19 de Ag. de 2020
I am trying to make a data fit for the data attached to this post,Nu=f(Re,Theta,Beta).I use lsqnonlin(fun,x0) function for this purpose.I have created a script file for this fitting,but everytime I try to run the script,the program always shows error messages.So,what is the problem with this script.
clc
clear all
% Create an anonymous function that describes the expected relationship
% between X and Y
f=@(c,x) c(1).*(x(:,1).^c(2)).*(x(:,2).^c(3)).*(x(:,3).^c(4))./x(:,4)-1;
% data set
% Specify x variables from data file,Re,Theta and Beta columns.
x=xlsread('all data for fitting');
% Specify y variable from data file ,(Nu)column.
y=x(:,4);
% Specify a vector of starting conditions for the solvers
c0=[1;1;1;1];
% Perform a nonlinear regression
c=lsqnonlin(f,c0);
##### 0 comentariosMostrar -2 comentarios más antiguosOcultar -2 comentarios más antiguos

Iniciar sesión para comentar.

Star Strider el 14 de Ag. de 2020
The objective function needs to be coded as:
ffcn = @(c) f(c,x) - y;
with the complete lsqnonlin call being:
f=@(c,x) c(1).*(x(:,1).^c(2)).*(x(:,2).^c(3)).*(x(:,3).^c(4))./x(:,4)-1;
ffcn = @(c) f(c,x) - y;
c0=[1;1;1;1];
C = lsqnonlin(ffcn, c0);
producing:
C =
1.0308e-01
1.3246e+00
1.9801e-06
-4.6017e-01
.
##### 13 comentariosMostrar 11 comentarios más antiguosOcultar 11 comentarios más antiguos
MOHAMED ABDULAZIM el 19 de Ag. de 2020
Did you try to run this script on your version?
Star Strider el 19 de Ag. de 2020
I used this:
D = xlsread('all data for fitting.xlsx');
x = D;
y = x(:,4);
f=@(c,x) c(1).*(x(:,1).^c(2)).*(x(:,2).^c(3)).*(x(:,3).^c(4));
ffcn = @(c) (f(c,x) - y)./y;
ftns = @(c) norm(ffcn(c));
PopSz = 500;
Parms = 4;
opts = optimoptions('ga', 'PopulationSize',PopSz, 'InitialPopulationMatrix',randi(1E+4,PopSz,Parms)*1E-4, 'MaxGenerations',2E3, 'PlotFcn',@gaplotbestf, 'PlotInterval',1);
t0 = clock;
fprintf('\nStart Time: %4d-%02d-%02d %02d:%02d:%07.4f\n', t0)
[theta,fval,exitflag,output] = ga(ftns, Parms, [],[],[],[],-Inf(Parms,1),Inf(Parms,1),[],[],opts)
t1 = clock;
fprintf('\nStop Time: %4d-%02d-%02d %02d:%02d:%07.4f\n', t1)
GA_Time = etime(t1,t0)
QQQ1 = datetime([zeros(1,5) GA_Time], 'Format','HH:mm:ss.SSS')
fprintf('\nElapsed Time: %23.15E s ', GA_Time)
fprintf(1,'\tRate Constants:\n')
for k1 = 1:length(theta)
fprintf(1, '\t\tTheta(%d) = %12.5E\n', k1, theta(k1))
end
and when I ran that just now, got these parameter estimates:
theta =
2.8517e+000 431.7000e-003 99.6000e-003 -324.6437e-003
with a fitness value of:
fval =
5.5386e+000
.

Iniciar sesión para comentar.

### Categorías

Más información sobre Surrogate Optimization en Help Center y File Exchange.

R2013a

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by