How to determine muscle activation timing of an emg signal?
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Are there any matlab toolboxes to determine onset and offset of an emg signal in order to evaluate muscle activation timing?
1 comentario
H W
el 26 de Nov. de 2022
Biceps = [10 : 35];
Triceps = [100 : 200];
figure;
polarplot(Biceps*pi/180, 0.7*ones(size(Biceps)), 'y', 'LineWidth',1.5);
hold on;
polarplot(Triceps*pi/180, 0.5*ones(size(Triceps)), 'g', 'LineWidth',1.5);
hold off;
set(gca,'ThetaZeroLocation','bottom', 'RLim',[0 1]);
legend('Biceps', 'Triceps', 'Location','NorthEastOutside');
Respuestas (1)
MarKf
el 27 de Nov. de 2022
% emg = timeseries;
% Fs = sampling frequency
% Fn = Nyquist frequency, Fs/2;
% filter, hilbert and boxcar
[B, A] = butter(6, 10/Fn, 'high'); % 6th order butterw 10hz highpassfilter
emgflt = filtfilt(B, A, emg); % twopass
emghlb = abs(hilbert(emgflt)); % hilbert transform
emgcnv = conv2([1], ones(1,Fs), emghlb, 'same'); % smooth using convolution
emgstd = (emgcnv - repmat(mean(emgcnv), 1, length(emgcnv))) ./ ...
repmat(std(emgcnv), 1, length(emgcnv)); % z-transform
emgtrl = emgstd>0; % detect the muscle activity
emgtrl = diff(emgtrl, [], 2);
emgon = find(emgtrl(:)== 1);
emgoff = find(emgtrl(:)==-1);
0 comentarios
Ver también
Categorías
Más información sobre Discrete Fourier and Cosine Transforms en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!