The Eigenvalues of a large matrix don't cross each other when plotted

1 visualización (últimos 30 días)
I am trying to plot the eigenvalues of a matrix in accending order w.r.to some parameter. The matrix has large dimension. Here various eigenvalues of the matrix is not actually crossing at some points rather it seems to be repeling each other at those points. But it is expected that it should cross over each other at those points. I don't understand why this is happening. Please somebody help me. The matlab code is given below.
om=1.0;
om0=0;
dlt=0.5;
n=50;
I1=eye(n);
I2=eye(2);
matdimension= n-1;
tempvector = 0:1:matdimension;
tempvector = sqrt(tempvector);
tempmatrix = diag(tempvector);
anni= circshift(tempmatrix,-1);
crea = anni';
num=crea*anni;
c=crea+anni;
sigx=[0,1;1,0];
sigz=[1,0; 0,-1];
lm=0:0.01:1.0;
w1 = zeros(size(lm));
w2 = zeros(size(lm));
w3 = zeros(size(lm));
w4 = zeros(size(lm));
w5 = zeros(size(lm));
w6 = zeros(size(lm));
for i = 1:length(lm)
H= om*kron(I2,num) +(dlt./2)* kron(sigz,I1) + lm(i).*(kron(sigx,crea+anni));
l= eig(H);
v= sort(l);
w1(i)=v(1);
w2(i)=v(2);
w3(i)=v(3);
w4(i)=v(4);
w5(i)=v(5);
w6(i)=v(6);
end
plot(lm,w1,'k',lm,w2,'r',lm,w3,'b',lm,w4,'g',lm,w5,'y',lm,w6,'c')

Respuesta aceptada

Ameer Hamza
Ameer Hamza el 25 de Sept. de 2020
Editada: Ameer Hamza el 25 de Sept. de 2020
Yes, this is a very common problem with MATLAB's eig function, and John has created this excellent package to solve this problem: https://www.mathworks.com/matlabcentral/fileexchange/22885-eigenshuffle . This maintains consistency in the order of eigenvalues. Try the following code
om=1.0;
om0=0;
dlt=0.5;
n=50;
I1=eye(n);
I2=eye(2);
matdimension= n-1;
tempvector = 0:1:matdimension;
tempvector = sqrt(tempvector);
tempmatrix = diag(tempvector);
anni= circshift(tempmatrix,-1);
crea = anni';
num=crea*anni;
c=crea+anni;
sigx=[0,1;1,0];
sigz=[1,0; 0,-1];
lm=0:0.01:1.0;
H = zeros(100, 100, length(lm));
for i = 1:length(lm)
H(:,:,i) = om*kron(I2,num) +(dlt./2)* kron(sigz,I1) + lm(i).*(kron(sigx,crea+anni));
end
[~, e] = eigenshuffle(H);
e = flipud(e);
w1 = e(1,:);
w2 = e(2,:);
w3 = e(3,:);
w4 = e(4,:);
w5 = e(5,:);
w6 = e(6,:);
plot(lm,w1,'k',lm,w2,'r',lm,w3,'b',lm,w4,'g',lm,w5,'y',lm,w6,'c')
  2 comentarios
AVM
AVM el 26 de Sept. de 2020
@Ameer : Thanks a lot. This is exactly which I was expecting.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by