Generate and Plot N Points Picking Random Points on Triangle

11 visualizaciones (últimos 30 días)
My task is to write a function that takes as input a positive integer n. We are asked to consider the traingle whose corner points are (0,0), (2,0), and (1,2). Let p0 = (1,1). The function's purpose is to generate and plot n points p1,p2, ... pn where pk is the point determined by randomly picking one of the three corners of the triangle, and letting pk be the midpoint between the chosen corner point and pk-1 for 1 <= k <= n. I have a small program written, but I have no clue where to go from there. Please help me to get started on finding a program that works. I am aware that this program does not do what I want, it is just a starting point. Here is what I have so far:
function ex3(n)
%
%
rng('shuffle')
x = zeros(1,n);
y = x;
k = 1;
while k <=n
x(k) = 2*rand;
y(k) = 1*rand;
if y(k) > 1/2*x(k)
k = k + 1;
end
end
Border_x = [0,2,2,0];
Border_y = [0,0,1,0];
plot(Border_x,Border_y,'r',x,y,'b.','markersize',1)
axis tight
axis equal
  1 comentario
Sophie Culhane
Sophie Culhane el 22 de Oct. de 2020
I would appreciate a starting point and I should be able to figure out a program from there. Thank you.

Iniciar sesión para comentar.

Respuesta aceptada

Alan Stevens
Alan Stevens el 22 de Oct. de 2020
More like the following;
rng('shuffle');
n = 1000; % Set number of points as desired
% Let (0,0) be vertex 1, (0,2) be vertex 2, (1,2) be vertex 3
X = [0 2 1];
Y = [0 0 2];
x = zeros(1,n);
y = x;
x(1) = 0.5; y(1) = 0.1; % starting point (change as desired)
for i = 2:n
p = randi(3,1); % Choose 1 2 or 3 at random
x(i) = (X(p) + x(i-1))/2;
y(i) = (Y(p) + y(i-1))/2;
end
Border_x = [0,2,1,0];
Border_y = [0,0,2,0];
plot(Border_x,Border_y,'r',x,y,'b.','markersize',1)
axis tight
axis equal
This generates a triangular Sierpinski gasket (better with a larger value of n). See what effect changing the starting point has.
  7 comentarios
Alan Stevens
Alan Stevens el 15 de Feb. de 2023
The object you've been asked to generate is known as a Sierpinski triangle. It is a fractal structure. The gaps are an intrinsic part of it!
Torsten
Torsten el 15 de Feb. de 2023
The object you've been asked to generate is known as a Sierpinski triangle.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Surface and Mesh Plots en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by