"InterX" gives me TWO coordinates instead of ONE. How can I solve this?

2 views (last 30 days)
I execute this code in the command window:
hold on
grid
axis equal
Q=11;
x1=0;
y1=0;
R=10;
%% %DIBUJO DE LA CIRCUNFERENCIA
%x and y are the coordinates of the center of the circle
%r is the radius of the circle
%0.01 is the angle step, bigger values will draw the circle faster but
caca=2*pi();
ang=linspace(0,caca);
xp=R*cos(ang);
yp=R*sin(ang);
circ=[xp;yp];
plot(xp,yp,'r');
%% %DIBUJO DE LOS RAYOS
anguloo=0;
[r0x,r0y]=coordrecta(x1,y1,Q,anguloo)
r0=[x1 r0x;y1 r0y];
plot(r0(1,:),r0(2,:),'r')
anguloo=10;
[r10x,r10y]=coordrecta(x1,y1,Q,anguloo)
r10=[x1 r10x;y1 r10y];
plot(r10(1,:),r10(2,:),'r')
anguloo=20;
[r20x,r20y]=coordrecta(x1,y1,Q,anguloo)
r20=[x1 r20x;y1 r20y];
plot(r20(1,:),r20(2,:),'r')
anguloo=30;
[r30x,r30y]=coordrecta(x1,y1,Q,anguloo)
r30=[x1 r30x;y1 r30y];
plot(r30(1,:),r30(2,:),'r')
anguloo=40;
[r40x,r40y]=coordrecta(x1,y1,Q,anguloo)
r40=[x1 r40x;y1 r40y];
plot(r40(1,:),r40(2,:),'r')
anguloo=50;
[r50x,r50y]=coordrecta(x1,y1,Q,anguloo)
r50=[x1 r50x;y1 r50y];
plot(r50(1,:),r50(2,:),'r')
anguloo=60;
[r60x,r60y]=coordrecta(x1,y1,Q,anguloo)
r60=[x1 r60x;y1 r60y];
plot(r60(1,:),r60(2,:),'r')
anguloo=70;
[r70x,r70y]=coordrecta(x1,y1,Q,anguloo)
r70=[x1 r70x;y1 r70y];
plot(r70(1,:),r70(2,:),'r')
anguloo=80;
[r80x,r80y]=coordrecta(x1,y1,Q,anguloo)
r80=[x1 r80x;y1 r80y];
plot(r80(1,:),r80(2,:),'r')
anguloo=90;
[r90x,r90y]=coordrecta(x1,y1,Q,anguloo)
r90=[x1 r90x;y1 r90y];
plot(r90(1,:),r90(2,:),'r')
%% %PUNTOS DE CORTE C
c0=InterX(circ,r0);
plot(c0(1,:),c0(2,:),'go');
c10=InterX(circ,r10);
plot(c10(1,:),c10(2,:),'go');
c20=InterX(circ,r20);
plot(c20(1,:),c20(2,:),'go');
c30=InterX(circ,r30);
plot(c30(1,:),c30(2,:),'go');
c40=InterX(circ,r40);
plot(c40(1,:),c40(2,:),'go');
c50=InterX(circ,r50);
plot(c50(1,:),c50(2,:),'go');
c60=InterX(circ,r60);
plot(c60(1,:),c60(2,:),'go');
c70=InterX(circ,r70);
plot(c70(1,:),c70(2,:),'go');
c80=InterX(circ,r80);
plot(c80(1,:),c80(2,:),'go');
c90=InterX(circ,r90);
plot(c90(1,:),c90(2,:),'go');
%% %DIBUJO DE LAS TANGENTES
angulito=0+90;
[t0x2,t0y2]=coordrecta(c0(1),c0(2),3*R,angulito)
t0=[c0(1) t0x2;c0(2) t0y2];
plot(t0(1,:),t0(2,:),'b')
angulito=10+90;
[t10x2,t10y2]=coordrecta(c10(1),c10(2),3*R,angulito)
t10=[c10(1) t10x2;c10(2) t10y2];
plot(t10(1,:),t10(2,:),'b');
angulito=20+90;
[t20x2,t20y2]=coordrecta(c20(1),c20(2),3*R,angulito)
t20=[c20(1) t20x2;c20(2) t20y2];
plot(t20(1,:),t20(2,:),'b')
angulito=30+90;
[t30x2,t30y2]=coordrecta(c30(1),c30(2),3*R,angulito)
t30=[c30(1) t30x2;c30(2) t30y2];
plot(t30(1,:),t30(2,:),'b')
angulito=40+90;
[t40x2,t40y2]=coordrecta(c40(1),c40(2),3*R,angulito)
t40=[c40(1) t40x2;c40(2) t40y2];
plot(t40(1,:),t40(2,:),'b')
angulito=50+90;
[t50x2,t50y2]=coordrecta(c50(1),c50(2),3*R,angulito)
t50=[c50(1) t50x2;c50(2) t50y2];
plot(t50(1,:),t50(2,:),'b')
angulito=60+90;
[t60x2,t60y2]=coordrecta(c60(1),c60(2),3*R,angulito)
t60=[c60(1) t60x2;c60(2) t60y2];
plot(t60(1,:),t60(2,:),'b')
angulito=70+90;
[t70x2,t70y2]=coordrecta(c70(1),c70(2),3*R,angulito)
t70=[c70(1) t70x2;c70(2) t70y2];
plot(t70(1,:),t70(2,:),'b')
angulito=80+90;
[t80x2,t80y2]=coordrecta(c80(1),c80(2),3*R,angulito)
t80=[c80(1) t80x2;c80(2) t80y2];
plot(t80(1,:),t80(2,:),'b')
angulito=90+90;
[t90x2,t90y2]=coordrecta(c90(1),c90(2),3*R,angulito)
t90=[c90(1) t90x2;c90(2) t90y2];
plot(t90(1,:),t90(2,:),'b')
%% %DIBUJO DE LOS ARCOS
mierda=2*pi();
gulo=linspace(0,mierda);
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c80 (NO DIBUJARLO)
radius=norm(c90-c80);
zentroa=c80;
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i90
%i90=InterX(circulu,t90);
%plot(i90(1,:),i90(2,:),'bo');
i90=c90;
%calculo del punto de interseccion i80
i80=InterX(circulu,t80);
plot(i80(1,:),i80(2,:),'bo');
%recta i80-c80 recta inicio arco
recti=[c80(1) i80(1);c80(2) i80(2)];
%angulo inicio del arco, recta c80-i80
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i90-c80 recta inicio arco
rectf=[c80(1) i90(1);c80(2) i90(2)];
%angulo final del arco, recta c80-i90
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin);
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m');
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c70 (NO DIBUJARLO)
radius=norm(i80-c70);
zentroa=c70;
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i70
i70=InterX(circulu,t70);
plot(i70(1,:),i70(2,:),'bo');
And as you can see, the Intersec point i70 that Matlab gives me, is a 2x2 matrix. Thtat doesn't make any sense, because i70 is a point, it should be only a 2x1 matrix, with only one coordinates.
However, if I execute in the command window the same code, but the only code needed to calculate i70 replacing all de data (such as c70...etc) by its exact values, as I do here:
mierda=2*pi();
gulo=linspace(0,mierda);
t70=[3.4189 -24.7719;9.3934 19.6540];
radius=3.4814;
zentroa=[3.4189;9.3934]; %c70=[3.4189;9.3934]
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
i70=InterX(circulu,t70); %i70=[0.1475;10.5841]
Matlab gives me i70 as a 2x1 matrix, this is, the correct way of giving me the coordinates of a point:
If theorically is the same data, the same code, why does this happen? How can I solve it?
  2 Comments
ErikJon Pérez Mardaras
ErikJon Pérez Mardaras on 28 Oct 2020
Edited: ErikJon Pérez Mardaras on 28 Oct 2020
I know, but the point is, why all "i" intersec points that Matlab calculates (i80,i60,i50,i40,i30...) are well calculated as a 2x1 matrix except "i70"? Why only i70 is bad calculated as a 2x2 matrix?
May sound like a stupid question but is a vital question for the further code I am programming. Here is the full code:
%DIBUJO DE LA EVOLVENTE
hold on
grid
axis equal
Q=11;
x1=0;
y1=0;
R=10;
%% %DIBUJO DE LA CIRCUNFERENCIA
%x and y are the coordinates of the center of the circle
%r is the radius of the circle
%0.01 is the angle step, bigger values will draw the circle faster but
caca=2*pi();
ang=linspace(0,caca);
xp=R*cos(ang);
yp=R*sin(ang);
circ=[xp;yp];
plot(xp,yp,'r');
%% %DIBUJO DE LOS RAYOS
anguloo=0;
[r0x,r0y]=coordrecta(x1,y1,Q,anguloo)
r0=[x1 r0x;y1 r0y];
plot(r0(1,:),r0(2,:),'r')
anguloo=10;
[r10x,r10y]=coordrecta(x1,y1,Q,anguloo)
r10=[x1 r10x;y1 r10y];
plot(r10(1,:),r10(2,:),'r')
anguloo=20;
[r20x,r20y]=coordrecta(x1,y1,Q,anguloo)
r20=[x1 r20x;y1 r20y];
plot(r20(1,:),r20(2,:),'r')
anguloo=30;
[r30x,r30y]=coordrecta(x1,y1,Q,anguloo)
r30=[x1 r30x;y1 r30y];
plot(r30(1,:),r30(2,:),'r')
anguloo=40;
[r40x,r40y]=coordrecta(x1,y1,Q,anguloo)
r40=[x1 r40x;y1 r40y];
plot(r40(1,:),r40(2,:),'r')
anguloo=50;
[r50x,r50y]=coordrecta(x1,y1,Q,anguloo)
r50=[x1 r50x;y1 r50y];
plot(r50(1,:),r50(2,:),'r')
anguloo=60;
[r60x,r60y]=coordrecta(x1,y1,Q,anguloo)
r60=[x1 r60x;y1 r60y];
plot(r60(1,:),r60(2,:),'r')
anguloo=70;
[r70x,r70y]=coordrecta(x1,y1,Q,anguloo)
r70=[x1 r70x;y1 r70y];
plot(r70(1,:),r70(2,:),'r')
anguloo=80;
[r80x,r80y]=coordrecta(x1,y1,Q,anguloo)
r80=[x1 r80x;y1 r80y];
plot(r80(1,:),r80(2,:),'r')
anguloo=90;
[r90x,r90y]=coordrecta(x1,y1,Q,anguloo)
r90=[x1 r90x;y1 r90y];
plot(r90(1,:),r90(2,:),'r')
%% %PUNTOS DE CORTE C
c0=InterX(circ,r0);
plot(c0(1,:),c0(2,:),'go');
c10=InterX(circ,r10);
plot(c10(1,:),c10(2,:),'go');
c20=InterX(circ,r20);
plot(c20(1,:),c20(2,:),'go');
c30=InterX(circ,r30);
plot(c30(1,:),c30(2,:),'go');
c40=InterX(circ,r40);
plot(c40(1,:),c40(2,:),'go');
c50=InterX(circ,r50);
plot(c50(1,:),c50(2,:),'go');
c60=InterX(circ,r60);
plot(c60(1,:),c60(2,:),'go');
c70=InterX(circ,r70);
plot(c70(1,:),c70(2,:),'go');
c80=InterX(circ,r80);
plot(c80(1,:),c80(2,:),'go');
c90=InterX(circ,r90);
plot(c90(1,:),c90(2,:),'go');
%% %DIBUJO DE LAS TANGENTES
angulito=0+90;
[t0x2,t0y2]=coordrecta(c0(1),c0(2),3*R,angulito)
t0=[c0(1) t0x2;c0(2) t0y2];
plot(t0(1,:),t0(2,:),'b')
angulito=10+90;
[t10x2,t10y2]=coordrecta(c10(1),c10(2),3*R,angulito)
t10=[c10(1) t10x2;c10(2) t10y2];
plot(t10(1,:),t10(2,:),'b');
angulito=20+90;
[t20x2,t20y2]=coordrecta(c20(1),c20(2),3*R,angulito)
t20=[c20(1) t20x2;c20(2) t20y2];
plot(t20(1,:),t20(2,:),'b')
angulito=30+90;
[t30x2,t30y2]=coordrecta(c30(1),c30(2),3*R,angulito)
t30=[c30(1) t30x2;c30(2) t30y2];
plot(t30(1,:),t30(2,:),'b')
angulito=40+90;
[t40x2,t40y2]=coordrecta(c40(1),c40(2),3*R,angulito)
t40=[c40(1) t40x2;c40(2) t40y2];
plot(t40(1,:),t40(2,:),'b')
angulito=50+90;
[t50x2,t50y2]=coordrecta(c50(1),c50(2),3*R,angulito)
t50=[c50(1) t50x2;c50(2) t50y2];
plot(t50(1,:),t50(2,:),'b')
angulito=60+90;
[t60x2,t60y2]=coordrecta(c60(1),c60(2),3*R,angulito)
t60=[c60(1) t60x2;c60(2) t60y2];
plot(t60(1,:),t60(2,:),'b')
angulito=70+90;
[t70x2,t70y2]=coordrecta(c70(1),c70(2),3*R,angulito)
t70=[c70(1) t70x2;c70(2) t70y2];
plot(t70(1,:),t70(2,:),'b')
angulito=80+90;
[t80x2,t80y2]=coordrecta(c80(1),c80(2),3*R,angulito)
t80=[c80(1) t80x2;c80(2) t80y2];
plot(t80(1,:),t80(2,:),'b')
angulito=90+90;
[t90x2,t90y2]=coordrecta(c90(1),c90(2),3*R,angulito)
t90=[c90(1) t90x2;c90(2) t90y2];
plot(t90(1,:),t90(2,:),'b')
%% %DIBUJO DE LOS ARCOS
mierda=2*pi();
gulo=linspace(0,mierda);
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c80 (NO DIBUJARLO)
radius=norm(c90-c80);
zentroa=c80;
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i90
%i90=InterX(circulu,t90);
%plot(i90(1,:),i90(2,:),'bo');
i90=c90;
%calculo del punto de interseccion i80
i80=InterX(circulu,t80);
plot(i80(1,:),i80(2,:),'bo');
%recta i80-c80 recta inicio arco
recti=[c80(1) i80(1);c80(2) i80(2)];
%angulo inicio del arco, recta c80-i80
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i90-c80 recta inicio arco
rectf=[c80(1) i90(1);c80(2) i90(2)];
%angulo final del arco, recta c80-i90
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin);
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m');
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c70 (NO DIBUJARLO)
radius=norm(i80-c70);
zentroa=c70;
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i70 %iX
i70=InterX(circulu,t70); %iX tX
plot(i70(1,:),i70(2,:),'bo'); %iX iX
%calculo del punto de interseccion i80 %iX+10 ya conocido
%i80=InterX(circulu,t80); %ix+10 tX+10
%plot(i80(1,:),i80(2,:),'bo'); %iX+10 iX+10
%recta i70-c70 recta inicio arco %iX-CX
recti=[c70(1) i70(1);c70(2) i70(2)];
%angulo inicio del arco, recta i70-C70 %iX-CX
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i80-c70 recta fin del arco %iX+10 CX
rectf=[c70(1) i80(1);c70(2) i80(2)]; %CX iX+10
%angulo final del arco, recta i80-C70 %iX+10 CX
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin); %es el recorrido de angulo que va a tener, esto es, desde el angulo a hasta el b. PONERLO EN RADIANES
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m') %dibujarlo en magenta 'm'
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c60 (NO DIBUJARLO) % circulo en CX
radius=norm(i70-c60); % iX+10 - CX
zentroa=c60; %CX
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i60 %iX
i60=InterX(circulu,t60); %iX tX
plot(i60(1,:),i60(2,:),'bo'); %iX iX
%calculo del punto de interseccion i70 %iX+10 ya conocido
%i70=InterX(circulu,t70); %ix+10 tX+10
%plot(i70(1,:),i70(2,:),'bo'); %iX+10 iX+10
%recta i60-c60 recta inicio arco %iX-CX
recti=[c60(1) i60(1);c60(2) i60(2)];
%angulo inicio del arco, recta i60-C60 %iX-CX
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i70-c60 recta fin del arco %iX+10 CX
rectf=[c60(1) i70(1);c60(2) i70(2)]; %CX iX+10
%angulo final del arco, recta i70-C60 %iX+10 CX
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin); %es el recorrido de angulo que va a tener, esto es, desde el angulo a hasta el b. PONERLO EN RADIANES
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m') %dibujarlo en magenta 'm'
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c50 (NO DIBUJARLO) % circulo en CX
radius=norm(i60-c50); % iX+10 - CX
zentroa=c50; %CX
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i50 %iX
i50=InterX(circulu,t50); %iX tX
plot(i50(1,:),i50(2,:),'bo'); %iX iX
%calculo del punto de interseccion i60 %iX+10 ya conocido
%i60=InterX(circulu,t70); %ix+10 tX+10
%plot(i60(1,:),i60(2,:),'bo'); %iX+10 iX+10
%recta i50-c50 recta inicio arco %iX-CX
recti=[c50(1) i50(1);c50(2) i50(2)];
%angulo inicio del arco, recta i50-C50 %iX-CX
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i60-c50 recta fin del arco %iX+10 CX
rectf=[c50(1) i60(1);c50(2) i60(2)]; %CX iX+10
%angulo final del arco, recta i60-C50 %iX+10 CX
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin); %es el recorrido de angulo que va a tener, esto es, desde el angulo a hasta el b. PONERLO EN RADIANES
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m') %dibujarlo en magenta 'm'
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c40 (NO DIBUJARLO) % circulo en CX
radius=norm(i50-c40); % iX+10 - CX
zentroa=c40; %CX
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i40 %iX
i40=InterX(circulu,t40); %iX tX
plot(i40(1,:),i40(2,:),'bo'); %iX iX
%calculo del punto de interseccion i50 %iX+10 ya conocido
%i50=InterX(circulu,t50); %ix+10 tX+10
%plot(i50(1,:),i50(2,:),'bo'); %iX+10 iX+10
%recta i40-c40 recta inicio arco %iX-CX
recti=[c40(1) i40(1);c40(2) i40(2)];
%angulo inicio del arco, recta i40-C40 %iX-CX
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i50-c40 recta fin del arco %iX+10 CX
rectf=[c40(1) i50(1);c40(2) i50(2)]; %CX iX+10
%angulo final del arco, recta i50-C40 %iX+10 CX
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin); %es el recorrido de angulo que va a tener, esto es, desde el angulo a hasta el b. PONERLO EN RADIANES
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m') %dibujarlo en magenta 'm'
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c30 (NO DIBUJARLO) % circulo en CX
radius=norm(i40-c30); % iX+10 - CX
zentroa=c30; %CX
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i30 %iX
i30=InterX(circulu,t30); %iX tX
plot(i30(1,:),i30(2,:),'bo'); %iX iX
%calculo del punto de interseccion i40 %iX+10 ya conocido
%i40=InterX(circulu,t40); %ix+10 tX+10
%plot(i40(1,:),i40(2,:),'bo'); %iX+10 iX+10
%recta i30-c30 recta inicio arco %iX-CX
recti=[c30(1) i30(1);c30(2) i30(2)];
%angulo inicio del arco, recta i30-C30 %iX-CX
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i40-c30 recta fin del arco %iX+10 CX
rectf=[c30(1) i40(1);c30(2) i40(2)]; %CX iX+10
%angulo final del arco, recta i40-C30 %iX+10 CX
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin); %es el recorrido de angulo que va a tener, esto es, desde el angulo a hasta el b. PONERLO EN RADIANES
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m') %dibujarlo en magenta 'm'
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c20 (NO DIBUJARLO) % circulo en CX
radius=norm(i30-c20); % iX+10 - CX
zentroa=c20; %CX
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i20 %iX
i20=InterX(circulu,t20); %iX tX
plot(i20(1,:),i20(2,:),'bo'); %iX iX
%calculo del punto de interseccion i30 %iX+10 ya conocido
%i30=InterX(circulu,t30); %ix+10 tX+10
%plot(i30(1,:),i30(2,:),'bo'); %iX+10 iX+10
%recta i20-c20 recta inicio arco %iX-CX
recti=[c20(1) i20(1);c20(2) i20(2)];
%angulo inicio del arco, recta i20-C20 %iX-CX
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i30-c20 recta fin del arco %iX+10 CX
rectf=[c20(1) i30(1);c20(2) i30(2)]; %CX iX+10
%angulo final del arco, recta i30-C20 %iX+10 CX
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin); %es el recorrido de angulo que va a tener, esto es, desde el angulo a hasta el b. PONERLO EN RADIANES
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m') %dibujarlo en magenta 'm'
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c10 (NO DIBUJARLO) % circulo en CX
radius=norm(i20-c10); % iX+10 - CX
zentroa=c10; %CX
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i10 %iX
i10=InterX(circulu,t10); %iX tX
plot(i10(1,:),i10(2,:),'bo'); %iX iX
%calculo del punto de interseccion i20 %iX+10 ya conocido
%i20=InterX(circulu,t20); %ix+10 tX+10
%plot(i20(1,:),i20(2,:),'bo'); %iX+10 iX+10
%recta i10-c10 recta inicio arco %iX-CX
recti=[c10(1) i10(1);c10(2) i10(2)];
%angulo inicio del arco, recta i10-C10 %iX-CX
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i20-c10 recta fin del arco %iX+10 CX
rectf=[c10(1) i20(1);c10(2) i20(2)]; %CX iX+10
%angulo final del arco, recta i20-C10 %iX+10 CX
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin); %es el recorrido de angulo que va a tener, esto es, desde el angulo a hasta el b. PONERLO EN RADIANES
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m') %dibujarlo en magenta 'm'
% con CADA punto/arco %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%circulo en c0 (NO DIBUJARLO) % circulo en CX
radius=norm(i10-c0); % iX+10 - CX
zentroa=c0; %CX
corx=zentroa(1)+radius*cos(gulo);
cory=zentroa(2)+radius*sin(gulo);
circulu=[corx;cory];
%calculo del punto de interseccion i0 %iX
i0=InterX(circulu,t0); %iX tX
plot(i0(1,:),i0(2,:),'bo'); %iX iX
%calculo del punto de interseccion i10 %iX+10 ya conocido
%i10=InterX(circulu,t10); %ix+10 tX+10
%plot(i10(1,:),i10(2,:),'bo'); %iX+10 iX+10
%recta i0-c0 recta inicio arco %iX-CX
recti=[c0(1) i0(1);c0(2) i0(2)];
%angulo inicio del arco, recta i0-C0 %iX-CX
[angini]=angulodrectav2(recti)
%pasandolo a radianes
rangini=deg2rad(angini);
%recta i10-c0 recta fin del arco %iX+10 CX
rectf=[c0(1) i10(1);c0(2) i10(2)]; %CX iX+10
%angulo final del arco, recta i10-C0 %iX+10 CX
[angfin]=angulodrectav2(rectf)
%pasandolo a radianes
rangfin=deg2rad(angfin);
%dibujo del arco
teta = linspace(rangini,rangfin); %es el recorrido de angulo que va a tener, esto es, desde el angulo a hasta el b. PONERLO EN RADIANES
xco = zentroa(1)+radius*cos(teta);
yco = zentroa(2)+radius*sin(teta);
plot(xco,yco,'m') %dibujarlo en magenta 'm'
As you can check, all "i" intersec points are well calculated by matlab (as a logic 2x1 matrix corresponding to the x and y coordinates) except of i70.
I don't know why and I would like to know what does it happen if calculated the same way as others

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by