Why the mean square error value is changing for different training functions ?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I have used the training function "traingdm" in training my neural network.
_
%%%%%%%%%%%%%%%%%%%%%
net=newff(minmax(in'),[20,1],{'tansig','purelin'},'traingdm');
%%%%%%%%%%%%%%%%%%%%%
_
What will happen if I change the training function from "traingdm" to "traindx" ?
Does the change affect the mean square error ?
0 comentarios
Respuesta aceptada
Greg Heath
el 19 de Feb. de 2013
If the problem is not a trivial one do not expect the weights and MSEs to be the same.
To make a valid comparison you have to reset the random number generator to the same intial state(e.g., seed = 0, rng(seed)) to obtain the same default random data division and random weight initialization.
Different minimization algorithms cannot be expected to reach the same local minimum when started from the same initial point.
When you reset the random number generator and make new trial runs, please post a summary of the results. I'm interested in the % of times the results are the same.
Hope this helps.
Thank you for formally accepting my answer
Greg
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!