Running function on GPU for all combination of variables
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Alessandro Murgia
el 28 de Nov. de 2020
Respondida: Matt J
el 28 de Nov. de 2020
Hi!
I'd like to run a highly-parallel simulation, taking advantage of my GPU.
Basically, i have a function that outputs a scalar, that takes as input other six variables. I want to run this function for all the combination of the variables, like this:
v1 = linspace(v1a,v1b,N);
v2 = linspace(v2a,v2b,N);
v3 = linspace(v3a,v3b,N);
v4 = linspace(v4a,v4b,N);
v5 = linspace(v5a,v5b,N);
v6 = linspace(v6a,v6b,N);
R = [];
for i1 = 1:N
for i2 = 1:N
for i3 = 1:N
for i4 = 1:N
for i5 = 1:N
for i6 = 1:N
r = myfun(v1(i1),v2(i2),v3(i3),v4(i4),v5(i5),v6(i6));
R = [R; r];
end
end
end
end
end
end
In this case, I'd use parfor to descrease the simulation duration, but the size of this variable is quite large so I'd prefer to run the simulation on the GPU.
I read about arrayfun, but its outcome would be R(i) = myfun(v1(i),...,v6(i)) , so it wouldn't run all the combinations, obtaining N results instead of N^6.
How could I write it in an efficient way? I guess it's a bad idea to create the grids before the call of the function, it would occupy too much memory...
Thank you very much.
0 comentarios
Respuesta aceptada
Matt J
el 28 de Nov. de 2020
Editada: Matt J
el 28 de Nov. de 2020
In this case, I'd use parfor to descrease the simulation duration, but the size of this variable is quite large so I'd prefer to run the simulation on the GPU.
No, if your myfun is completely generic, then parfor would be better.
R=nan(N^6,1); %pre-allocate
parfor n=1:numel(R)
[i1,i2,i3,i4,i5,i6]=ind2sub([N,N,N,N,N,N] ,n);
R(n) = myfun(v1(i1),v2(i2),v3(i3),v4(i4),v5(i5),v6(i6));
end
However, further optimization may be possible depending on the particulars of hat myfun is doing.
1 comentario
Más respuestas (1)
Matt J
el 28 de Nov. de 2020
Here's a loop-free method using ndgridVecs,
but bear in mind that if N is not less than about 20 or so, it's questionable whether you would have enough memory even just to store the final result, r.
v1 = linspace(v1a,v1b,N);
v2 = linspace(v2a,v2b,N);
v3 = linspace(v3a,v3b,N);
v4 = linspace(v4a,v4b,N);
v5 = linspace(v5a,v5b,N);
v6 = linspace(v6a,v6b,N);
v7 = linspace(v7a,v7b,N);
[V1,V2,V3,V4,V5,V6,V7]=ndgridVecs(v1,v2,v3,v4,v5,v6,v7);
R=myfun(V1,V2,V3,V4,V5,V6,V7);
function [E_est] = myfun(m_0,y0,ys1,ys2,ys3,ut1,ut2,ut3,h)
g = 9.81;
% compute the time instant at which the weight passes in front of the sensor
t1 = (2*(y0-ys1)./g).^0.5 + ut1; % first sensor (the closest to the sample) - add uncertainty ut1
t2 = (2*(y0-ys2)./g).^0.5 + ut2; % second sensor - add uncertainty ut2
t3 = (2*(y0-ys3)./g).^0.5 + ut3; % third sensor - add uncertainty ut3
% compute numerical derivative
A = -3./(2.*h);
B = 2./h;
C = -1./(2.*h);
dt_exp = A.*t1 + B.*t2 + C.*t3;
v_exp = 1./dt_exp;
E_est = 0.5.*m_0.*v_exp.^2;
end
0 comentarios
Ver también
Categorías
Más información sobre GPU Computing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!