Why can't I use the mae error with the Levenber-Marquardt algorithm?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Giuseppe D'Amico
el 4 de Dic. de 2020
Comentada: Giuseppe D'Amico
el 4 de Dic. de 2020
Hi, I'm training a neural network using a script I got using the matlab tool on neural networks.In particular I am using a timedelaynetwork for the prediction of a historical power series, I modified the network by inserting two hidden layers, one with a logsig activation function and one with a tansig activation function.I am using is the levenberg-marquardt, inserting the mae as a performance function, the message in the figure appears in the command window.
Why can't I use the mae with the trainlm?
Also, I would like to ask you, in your opinion is the architecture and type of network I am using to make the power prediction correct? or could it be improved in some way?
0 comentarios
Respuesta aceptada
Matt J
el 4 de Dic. de 2020
Editada: Matt J
el 4 de Dic. de 2020
Why can't I use the mae with the trainlm?
Just a guess, but Levenberg-Marquardt presumes that a Jacobian can be computed at the optimum parameter selection. In the ideal scenario where the optimal MAE=0, the Jacobian would fail to exist, due to the non-differentiability of at .
Más respuestas (0)
Ver también
Categorías
Más información sobre Define Shallow Neural Network Architectures en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!