How to retrieve optimal MinLeafSize after automatic hyperparameter optimization for Tree Ensemble (fitrensemble)?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Haris K.
el 6 de Feb. de 2021
Hi. I am running MATLAB's automatic Bayesian optimization for a number of parameters for a Tree Ensemble.
opts = struct('Kfold',4,'Optimizer','bayesopt');
Mdl = fitrensemble(X,Y,'OptimizeHyperparameters',{'Method','NumLearningCycles','LearnRate','MinLeafSize'},'HyperparameterOptimizationOptions',opts);
I understand that all the optimal parameters are embedded in the resulted object ‘Mdl’, but I was wondering if it’s possible to retrieve and save in a variable the optimal MinLeafSize. Even though I have found the rest optimized parameters:
Mdl.ModelParameters.Method %Method
Mdl.ModelParameters.NLearn %NumLearningCycles
Mdl.ModelParameters.LearnRate %LearnRate
but, I cannot obtain the MinLeafSize. However, I can see that it is listed among the properties of 'Mdl' under MinLeaf:
Mdl.ModelParameters.LearnerTemplates{1,1}
Anyone knows how to extract this? Thanks.
0 comentarios
Respuesta aceptada
Cris LaPierre
el 6 de Feb. de 2021
Editada: Cris LaPierre
el 6 de Feb. de 2021
I ran both a tree and ensemble models optimizing minLeafSize. For a decision tree, MinLeaf is a model parameter, but not for an ensemble. The only way I could find to see the value was by viewing the template.
Mdl.ModelParameters.LearnerTemplates{1,1}
ans =
Fit template for regression Tree.
SplitCriterion: []
MinParent: []
MinLeaf: 126
MaxSplits: 10
NVarToSample: []
MergeLeaves: 'off'
Prune: 'off'
PruneCriterion: []
QEToler: []
NSurrogate: []
MaxCat: []
AlgCat: []
PredictorSelection: []
UseChisqTest: []
Stream: []
Reproducible: []
Version: 2
Method: 'Tree'
Type: 'regression'
3 comentarios
Bernhard Suhm
el 8 de Feb. de 2021
You can use bestPoint(Mdl.HyperparameterOptimizationResults) to access the hyperparameters of the "best estimated" model, including 'MinLeafSize'
Más respuestas (0)
Ver también
Categorías
Más información sobre Regression Tree Ensembles en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!