Question on using generative adversarial network GAN for numerical data
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Dear All,
Please, i need your support on generative Adversarial Network, i want to use the model on numerical data, but the examples provided by matlab is on image data.
Question 1
As described in the code below, how do i choose the numLatentInputs if i am working on numerical data??
Concerning the projectionSize = [4 4 512]; Please, how do i apply for numerical data
Question 2.
A minibatchqueue function and preprocessing function were introduced has shown the second code below to process and manage mini-batches of data. Since this is applicable for image data, how can i implement minibatches on numerical data?
PS: the data i'm working on has three variables with 100 timestep each.
Thanks.
The link below is the entire code for generative adversarial network (GAN) for images provided by Matlabhttps://www.mathworks.com/help/deeplearning/ug/train-generative-adversarial-network.html
filterSize = 5;
numFilters = 64;
numLatentInputs = 100;
projectionSize = [4 4 512];
layersGenerator = [
featureInputLayer(numLatentInputs,'Name','in')
projectAndReshapeLayer(projectionSize,numLatentInputs,'Name','proj');
%% other codes excluded%%.....
augimds.MiniBatchSize = miniBatchSize;
executionEnvironment = "auto";
mbq = minibatchqueue(augimds,...
'MiniBatchSize',miniBatchSize,...
'PartialMiniBatch','discard',...
'MiniBatchFcn', @preprocessMiniBatch,...
'MiniBatchFormat','SSCB',...
'OutputEnvironment',executionEnvironment);
%.....other codes excluded.....
function X = preprocessMiniBatch(data)
% Concatenate mini-batch
X = cat(4,data{:});
% Rescale the images in the range [-1 1].
X = rescale(X,-1,1,'InputMin',0,'InputMax',255);
end
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!