How to calculate the standard error estimation when using fit from curve fitting toolbox?
59 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Albert Bing
el 22 de Jul. de 2021
Respondida: Star Strider
el 22 de Jul. de 2021
Is is possible to calculate the standard error estimation when using fit from curve fitting toolbox as in polyfit?
Suppose I have 2 vector (x, y). Using polyfit and polyval gives the standard error estimation for all predictions.
How to calculate delta in fit? I need the prediction interval like examples below.
I assume the delta in polyval is not a scalar but varies with x. (Purhaps it is not?)
Example from the documention,
x = 1:100;
y = -0.3*x + 2*randn(1,100);
[p,S] = polyfit(x,y,1);
[y_fit,delta] = polyval(p,x,S);
plot(x,y,'bo')
hold on
plot(x,y_fit,'r-')
plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--')
title('Linear Fit of Data with 95% Prediction Interval')
legend('Data','Linear Fit','95% Prediction Interval')
0 comentarios
Respuesta aceptada
Star Strider
el 22 de Jul. de 2021
x = linspace(0, 100, 100);
y = -0.3*x + 2*randn(1,100);
[f,gof,out] = fit(x(:), y(:), 'poly1')
ci = predint(f, x);
figure
plot(f, x, y)
hold on
plot(x, ci, '--')
hold off
grid
hl = legend;
hl.String{3} = 'Lower 95% CI';
hl.String{4} = 'Upper 95% CI';
.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Interpolation en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!