Matrix Factorization In Matlab using Stochastic Gradient Descent

7 visualizaciones (últimos 30 días)
oMiD Mousazadeh
oMiD Mousazadeh el 7 de Oct. de 2013
Comentada: Matt J el 7 de Oct. de 2013
I have to factorize Matrix R[m*n] to two low-rank Matrices (U[K*m] and V[K*n]), I do this for predicting missing values of R by U and V.
The problem is, for factorizing R I can't use Matlab factorization methods, so I have to work on objective function which minimizes the sum-of-squared-errors for enhancing factorization accuracy:
details are shown below:
My Question in this post is how to minimize function F in Matlab Using Stochastic Gradient Descent method to decompose R into U and V matrices.
  1 comentario
Matt J
Matt J el 7 de Oct. de 2013
Since your function is not continuous/differentiable (because I_ij is not), I wonder whether any kind of gradient method applies.
How large are R, U, ad V typically. You might be able to use the genetic algorithm ga() in the Global Optimization Toolbox.

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Get Started with MATLAB en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by