This is a variant of a previous problem on maximal cliques. Instead of simply computing the number of maximal cliques in an undirected graph, now you must return the cliques themselves.
Given an NxN adjacency matrix (A) for an undirected graph with N vertices, return an array (C) in which each column encodes one of the maximal cliques in the graph. If C(i,j) = 1, then the ith vertex in the graph is included in the jth clique. The order of columns does not matter, but all maximal cliques must be given - that is, size(C,2) should equal the number of maximal cliques.
Example
Consider the graph shown below,
which has the following adjacency matrix:
A = [ 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 ]
The maximal cliques are {1,2}, {2,3,4}, and {4,5}. Therefore, one (of three) valid outputs is:
C = [ 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 ]
NOTE: You may assume the data type of the adjacency matrix (A) is double.
test suite 3 prevented my brute-force :(
764 Solvers
Equidistant numbers containing certain value in an interval
73 Solvers
3391 Solvers
Penny flipping - calculate winning probability (easy)
127 Solvers
MATCH THE STRINGS (2 CHAR) very easy
202 Solvers