Problem 54620. List the Euclid numbers
Euclid proved that the number of primes is infinite with the following argument. Suppose the primes form a finite set
,
,
. Compute
. This number N is either prime or composite.
If it is prime, then the original supposition that the primes form a finite set is false. For example, if we assume that the only primes are 2, 3, and 5, then
, which is prime. Therefore, 31 should be in the set of primes.
If N is composite, then there must be another prime number because N is not divisible by any of the primes in the original set. For example, if we assume the only primes are 2, 3, 5, and 31, then
. Therefore, 7 and 19 should be in the set as well.
Either way, a contradiction is reached, and the set of primes must be infinite. In other words, we can always add another prime to the set.
Write a function to return the nth Euclid number
as a character string, where
is the nth prime. Take the zeroth Euclid number to be 2.
Solution Stats
Solution Comments
Show commentsProblem Recent Solvers8
Suggested Problems
-
1249 Solvers
-
Project Euler: Problem 5, Smallest multiple
1525 Solvers
-
Arrange Vector in descending order
12319 Solvers
-
248 Solvers
-
How long do each of the stages of the rocket take to burn?
350 Solvers
More from this Author307
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!