Automatic Thresholding

versión (1.1 KB) por Kanchi
Compute an optimal threshold for seperating the data into two classes.

6,7K descargas

Actualizada 21 Mar 2006

Sin licencia

Compute an optimal threshold for seperating the data into two classes [1].

This algorithm can be summarized as follows. The histogram is initially segmented into two
parts using a a randonly-select starting threshold value (denoted as T(1)). Then, the data are classified into two classes (denoted as c1 and c2). Then, a new threshold value is computed as the average of the above two sample means. This process is repeated untill the threshold value
does not change any more.

The algorithm was implemented by Dhanesh Ramachandram [2]. However, the input data of her/his algorithm should lie in the range [0,255]. My code doesn't have this requirement.

t = func_threshold(T);

Reference: [1]. T. W. Ridler, S. Calvard, Picture thresholding using an iterative selection method,
IEEE Trans. System, Man and Cybernetics, SMC-8, pp. 630-632, 1978.
[2]. Dhanesh Ramachandram, Automatic Thresholding. Available online at:

Jing Tian
Contact me :
This program is written in Mar. 2006 during my postgraduate studying in Singapore.

Citar como

Kanchi (2022). Automatic Thresholding (, MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R13
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Inspirado por: Automatic Thresholding

Inspiración para: Ridler-Calvard image thresholding, Autoscaleit

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!