GIFT

versión 4.0.3.5 (35.8 MB) por Cyrus Eierud
Group ICA/IVA software (MATLAB)

19 descargas

Actualizada 23 Sep 2022

De GitHub

Ver licencia en GitHub

GIFT

Group ICA/IVA software (MATLAB)

TReNDS

Table of Contents

  1. Introduction
  2. Download
  3. GIFT BIDS-Apps
  4. Screen Shots
  5. Toolboxes
    1. Mancovan
    2. NBiC
  6. Version History

Introduction

GIFT is an application supported by the NIH under grant 1RO1EB000840 to Dr. Vince Calhoun and Dr. Tulay Adali. It is a MATLAB toolbox which implements multiple algorithms for independent component analysis and blind source separation of group (and single subject) functional magnetic resonance imaging data. GIFT works on MATLAB R2008a and higher. Many ICA algorithms were generously contributedby Dr. Andrzej Cichocki. These are also available in Dr. Cichocki's ICALAB toolbox. For any question or comments please contact Vince Calhoun (vcalhoun@gsu.edu) or Cyrus Eierud (ceierud@gsu.edu).

Please note that all the toolboxes in GIFT require only MATLAB and not dependent on additional MATLAB toolboxes like Image Processing, Signal Processing, etc. Basic GIFT analysis (without GUI) runs on MATLAB R13 and higher. GIFT GUI works on R2008a and higher.

Downloads

GroupICAT v4.0c - Download by clicking the green code button on the upper right on this page and then clone the software using the link and the git clone command in your terminal. Current version of Group ICA. Requires MATLAB R2008a and higher.

Stand Alone Versions

Windows 64 - Compiled on Windows 64 bit OS and MATLAB R2020a. Please see read me text file for more details.
Linux-x86-64 - Compiled on Linux-x86-64 bit OS and MATLAB R2016b. Please see read me text file for more details.
fMRI Data - Example fMRI datais from a visuomotor paradigm.
Mancovan Sample Data - Sample data to use in mancovan analysis or temporal dfnc analysis.\

Complex GIFT - ICA is applied on complex fMRI data. Please follow the read me text file instructions for doing complex fMRI ICA analysis.\

GIFT BIDS-Apps

If you have your data in BIDS format or you want to run GIFT under a cluster you may want to our GIFT BIDS-Apps gift-bids.

Screen Shots

GIFT
Figure 1. Main menu of GIFT

Toolboxes

Mancovan

Mancovan toolbox is based on the paper (E. Allen, E. Erhardt, E. Damaraju, W. Gruner, J. Segall, R. Silva, M. Havlicek, S. Rachakonda, J. Fries, R.Kalyanam, A. Michael, J. Turner, T. Eichele, S. Adelsheim, A. Bryan, J. R. Bustillo, V. P. Clark, S. Feldstein,F. M. Filbey, C. Ford, et al, 2011). This toolbox works on MATLAB versions greater than R2008a. Features used are subject component spatial maps, timecourses spectra and FNC correlations. Multivariate tests are done on the features to determine the significant covariates which are later used in the univariate tests on each feature. To invoke the toolbox, select “Mancovan” under “Toolboxes” menu (Figure 3.2). You could also invoke toolbox using mancovan_toolbox at the command prompt. Mancovan toolbox (Figure 3.38) is divided into four parts like create design matrix, setup features, run mancova and display.

N-BiC

NBiC toolbox is based on the 2020 publication "N-BiC: A Method for Multi-Component and Symptom Biclustering of Structural MRI Data: Application to Schizophrenia" (Md Abdur Rahaman , Jessica A. Turner, Cota Navin Gupta, Srinivas Rachakonda, Jiayu Chen , Jingyu Liu , Theo G. M. van Erp, Steven Potkin, Judith Ford, Daniel Mathalon, Hyo Jong Lee, Wenhao Jiang, Bryon A. Mueller, Ole Andreassen, Ingrid Agartz, Scott R. Sponheim , Andrew R. Mayer, Julia Stephen , Rex E. Jung, Jose Canive, Juan Bustillo, and Vince D. Calhoun). This toolbox works on MATLAB versions greater than R2008a. Click here for more info.

Version History

IcaTbVersion: 4.0.3.5. More information about about the GIFT version history is found at the following link: GIFT version history

Citar como

Calhoun, Vince D., et al. “Alcohol Intoxication Effects on Simulated Driving: Exploring Alcohol-Dose Effects on Brain Activation Using Functional MRI.” Neuropsychopharmacology, vol. 29, no. 11, Springer Science and Business Media LLC, Aug. 2004, pp. 2097–107, doi:10.1038/sj.npp.1300543.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2016b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

GroupICATv4.0c/icatb

GroupICATv4.0c/icatb/@gifti

GroupICATv4.0c/icatb/@gifti/private

GroupICATv4.0c/icatb/icatb_analysis_functions

GroupICATv4.0c/icatb/icatb_analysis_functions/icatb_algorithms

GroupICATv4.0c/icatb/icatb_analysis_functions/icatb_algorithms/icatb_semiblindInfomax

GroupICATv4.0c/icatb/icatb_batch_files

GroupICATv4.0c/icatb/icatb_display_functions

GroupICATv4.0c/icatb/icatb_helpManual

GroupICATv4.0c/icatb/icatb_helper_functions

GroupICATv4.0c/icatb/icatb_io_data_functions

GroupICATv4.0c/icatb/icatb_mancovan_files

GroupICATv4.0c/icatb/icatb_parallel_files

GroupICATv4.0c/icatb/icatb_scripts

GroupICATv4.0c/icatb/icatb_spm_files

GroupICATv4.0c/icatb/icatb_spm_files/@icatb_file_array

GroupICATv4.0c/icatb/icatb_spm_files/@icatb_file_array/private

GroupICATv4.0c/icatb/icatb_spm_files/@icatb_nifti

GroupICATv4.0c/icatb/icatb_spm_files/@icatb_nifti/private

GroupICATv4.0c/icatb/icatb_talairach_scripts

GroupICATv4.0c/icatb/icatb_templates

GroupICATv4.0c/icatb/toolbox/Graphical_Lasso

GroupICATv4.0c/icatb/toolbox/dynamic_coherence

GroupICATv4.0c/icatb/toolbox/eegiftv1.0c

GroupICATv4.0c/icatb/toolbox/eegiftv1.0c/icatb_eeg_batch_files

GroupICATv4.0c/icatb/toolbox/eegiftv1.0c/icatb_eeg_files

GroupICATv4.0c/icatb/toolbox/eegiftv1.0c/icatb_eeglabv6.0b_files

GroupICATv4.0c/icatb/toolbox/export_fig

GroupICATv4.0c/icatb/toolbox/icasso122

GroupICATv4.0c/icatb/toolbox/mancovan

GroupICATv4.0c/icatb/toolbox/mi

GroupICATv4.0c/icatb/toolbox/nbic

GroupICATv4.0c/icatb/toolbox/noisecloud

GroupICATv4.0c/icatb/toolbox/noisecloud/3rdparty

GroupICATv4.0c/icatb/toolbox/noisecloud/3rdparty/glmnet_matlab

GroupICATv4.0c/icatb/toolbox/noisecloud/prep

GroupICATv4.0c/icatb/toolbox/noisecloud/prep/label-good-bad-gui

GroupICATv4.0c/icatb/toolbox/noisecloud/scripts

Para consultar o informar de algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o informar de algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.