Tutorial: Bayesian Optimization
Versión 1.0.0 (4,02 KB) por
Karl Ezra Pilario
1D and 2D black-box Bayesian optimization demonstration with visualizations.
This code shows a visualization of each iteration in Bayesian Optimization. MATLAB's fitrgp is used to fit the Gaussian process surrogate model, then the next sample is chosen using the Expected Improvement acquisition function. An exploitation-exploration parameter can be changed in the code. The code contains both 1D and 2D "black-box" functions for optimization.
References:
[1] Rasmussen and Williams (2006). "Gaussian Processes for Machine Learning," MIT Press.
[2] Frazier (2018). https://arxiv.org/abs/1807.02811
[3] Snoek (2012). https://arxiv.org/pdf/1206.2944.pdf
Citar como
Karl Ezra Pilario (2025). Tutorial: Bayesian Optimization (https://www.mathworks.com/matlabcentral/fileexchange/114950-tutorial-bayesian-optimization), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2022a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0 |