Iterative Closest Point Method

Fits a set of data points to a set of model points under a rigid body transformation
25,4K Descargas
Actualizado 2 jul 2021

Ver licencia

The ICP (iterative closest point) algorithm finds a rigid body transformation such that a set of data points fits to a set of model points under the transformation. Default is to use least squares minimization but other criterion functions can be used as well. The implementation is based on the IRLS-ICP described in [1].
References:
[1] Bergström, P. and Edlund, O. 2014, “Robust registration of point sets using iteratively reweighted least squares”, Computational Optimization and Applications, vol 58, no. 3, pp. 543-561, doi: 10.1007/s10589-014-9643-2
[2] Bergström, P. and Edlund, O. (2016) 2017, “Robust registration of surfaces using a refined iterative closest point algorithm with a trust region approach”, Numerical Algorithms, doi: 10.1007/s11075-016-0170-3
Doi links:
http://dx.doi.org/10.1007/s10589-014-9643-2
http://dx.doi.org/10.1007/s11075-016-0170-3
http://dx.doi.org/10.1007/s00170-010-2950-6
Springer Nature’s SharedIt links (full paper online access):
http://rdcu.be/nJRM
http://rdcu.be/noHE
http://rdcu.be/nJUW
A demonstration of applications, where an ICP-algorithm [2] is implemented in Matlab and C, can be seen on YouTube
https://youtu.be/cPS-DY9sCz4

Citar como

Per Bergström (2026). Iterative Closest Point Method (https://es.mathworks.com/matlabcentral/fileexchange/12627-iterative-closest-point-method), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2015a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Delaunay Triangulation en Help Center y MATLAB Answers.
Versión Publicado Notas de la versión
1.6.0.1

Update of links

1.6.0.0

Improved documentation

1.5.0.0

A new implementation of the ICP algorithm and three examples are added

1.0.0.0

Have added additional inputs to icp.