Multi-Objective RSO-Based Convolutional Neural Networks
Versión 1.0.0 (40,1 MB) por
Gehad Ismail Sayed
RSO is used to find the optimal values for the hyperparameters of the deep-learning Architecture
Rat Swarm Optimizer (RSO) is one of the recently published swarm intelligence algorithms proposed in late 2020 by G. Dhiman. This paper introduces a novel diagnosis approach, namely RSO-AlexNet-COVID-19. The proposed hybrid approach is based on the rat swarm optimizer (RSO) and convolutional neural network (CNN). RSO is used to find the optimal values for the hyperparameters of the AlexNet Architecture to achieve a high level of diagnostic accuracy for COVID-19. It obtained overall classification accuracy of 100% for CT images datasets and an accuracy of 95.58% for the X-ray images dataset. Moreover, the performance of the proposed hybrid approach is compared with other CNN architecture, Inception v3, VGG16, and VGG19.
Citar como
Gehad Ismail Sayed A Novel Multi-Objective Rat Swarm Optimizer-Based Convolutional Neural Networks for the Diagnosis of COVID-19 Disease. Aut. Control Comp. Sci. 56, 198–208 (2022). https://doi.org/10.3103/S0146411622030075
Compatibilidad con la versión de MATLAB
Se creó con
R2023a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Rat Swarm Optimizer-Based Convolutional Neural Networks for the Diagnosis of COVID-19 Disease
Rat Swarm Optimizer-Based Convolutional Neural Networks for the Diagnosis of COVID-19 Disease
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0 |
