Fatigue data analysis with Weibull distribution function

Statistical analysis of fatigue data to define mean and characteristic parameters of a linear fatigue model using Weibull distribution
71 Descargas
Actualizado 12 may 2023

Ver licencia

This function is prepared to analyse experimental fatigue data defining a mean curve using a linear fatigue model based on linear regression:
y = Ax + B
It also computes a characteristic value of the linear fatigue model corresponding to a probability of failure (p) based on Weibull distribution function:
y = [Ax + B] * beta [-ln(p)] ^ alfa
Alfa and beta are the scale and shape parameters, respectively, estimated by means of four estimation methods: Linear Least Squares Method, Weighted Linear Least Squares Method, Maximum Likelihood Method and Method of Moments. The most accurate estimation method is determined by aplying three goodness-of-fit tests: Kolmogorov-Smirnov, Anderson-Darling and Chi-Square.
INPUTS:
p - probability of failure [-]
cycles - experimental data: number of cycles
damage_parameter - experimental data: damage parameter
(stress,strain,etc.)
OUTPUTS:
A - Slope of linear fatigue model
B - Intersection of linear fatigue model with ordinate axis
r2 - Coefficient of determination
alfa - Scale parameter for Weibull distribution
beta - Shape parameter for Weibull distribution
detail_cat - Detail category
REFERENCES:
- J. Barbosa, R. Júnior, J. Correia, A. Jesus and R. Calçada, Analysis of the fatigue life estimators of the materials using small samples, Journal of Strain Analysis for Engineering Design, 53 (8): 699-710, https://doi.org/10.1177/0309324718782245
- B. Pedrosa, J. Correia, C. Rebelo and M. Veljkovic, Reliability of Fatigue Fatigue Strength Curves for Riveted Connections Using Normal and Weibull Distribution Functions, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol. 6, no. 3, (2020), https://doi.org/10.1061/AJRUA6.0001081
- B. Pedrosa, J. Correia, C. Rebelo, M. Veljkovic and H. Gervásio, Fatigue Experimental Characterization of Preloaded Injection Bolts in a Metallic Bridge Strengthening Scenario, Engineering Structures, vol. 234, 112005 (2021), https://doi.org/10.1016/j.engstruct.2021.112005
Developed by Bruno Pedrosa
ISISE - Institute for Sustainability
and Innovation in Structural Engineering
Department of Civil Engineering
University of Coimbra
Portugal
Bruno Pedrosa (bruno.pedrosa@uc.pt)
Ver.: 15-May-2023

Citar como

Bruno Pedrosa (2025). Fatigue data analysis with Weibull distribution function (https://es.mathworks.com/matlabcentral/fileexchange/129489-fatigue-data-analysis-with-weibull-distribution-function), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2018a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0