Image Classification for Non-Data Scientists
MATLAB Image Classification for Non-Data Scientists
It provides an image classification sample-based pre-trained deep neural network for non-data scientists. You can test the image classification by just copying images to a folder.
Requirement
It requires Deep Learning Toolbox. Pleae check Deep Learning Toolbox
It also requires to install app of pre-trained network when you use a new network.
Usage
Run demo_image_classification.
img_dir = 'images'; % specify the image folder
imds_train = load_imds( [img_dir,'/train/'] );
imds_test = load_imds( [img_dir,'/test/'] );
imcl = ImageClassifier('resnet18'); % specify the name of pre-trained netowrk.
imcl = imcl.fit( imds_train, 'num_iter', 10000, 'rho', 0.001, 'reg',1E-8, 'smooth', [0.50, 0.75] ); % parameters
[pred, proba] = imcl.pred( imds_test ); % test with test images
[results, acc] = result_table( pred, proba, imds_test ); % generate result table
Available Pre-trained feature extractor
googlenet, inceptionv3, densenet201, mobilenetv2, resnet18, resnet50, resnet101, xception, inceptionresnetv2, shufflenet, nasnetmobile, nasnetlarge, efficientnetb0, alexnet, vgg16, vgg19
Dataset
It includes four models images.
-
0: Dzee Shah That may be name of photographer. If you know the name of model, please let me know.
-
2: Saya Akane
Citar como
Masayuki Tanaka (2025). Image Classification for Non-Data Scientists (https://github.com/mastnk/ImageClassificationForNonDataScientists/releases/tag/0.1.0), GitHub. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
ImCla
Versión | Publicado | Notas de la versión | |
---|---|---|---|
0.1.0 |