partial reinforcement optimizer (PRO). Matlab Source Code

This source code is an implementation of the PRO algorithm to solve CEC2017 benchmark functions.
497 Descargas
Actualizado 2 nov 2023

Ver licencia

Partial Reinforcement Optimizer (PRO), is a novel evolutionary optimization algorithm. The major idea behind the PRO comes from a psychological theory in evolutionary learning and training called the partial reinforcement effect (PRE) theory. According to the PRE theory, a learner is intermittently reinforced to learn or strengthen a specific behavior during the learning and training process. The reinforcement patterns significantly impact the response rate and strength of the learner during a reinforcement schedule, achieved by appropriately selecting a reinforcement behavior and the time of applying reinforcement process. In the PRO algorithm, the PRE theory is mathematically modeled to an evolutionary optimization algorithm for solving global optimization problems.

Citar como

Taheri, Ahmad, et al. “Partial Reinforcement Optimizer: An Evolutionary Optimization Algorithm.” Expert Systems with Applications, Elsevier BV, Oct. 2023, p. 122070, doi:10.1016/j.eswa.2023.122070.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2016b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas
Versión Publicado Notas de la versión
1.0.0