Bifurcation diagram for the Lorenz Chaotic system
Versión 1.0.5 (2,34 KB) por
Lazaros Moysis
Compute the bifurcation, or continuation, diagram for the Lorenz chaotic system
This code can be used to compute the bifurcation diagram for the Lorenz chaotic system.
The diagram is generated by simulating the system from fixed initial conditions, and after discarding the transient, computing the intersections of the trajectory with a given plane of choice, and a specific direction.
The code can be easily adapted to compute a continuation diagram, where after each simulation, the initial condition is set equal to the final value of the previous simulation.
The code can also be easily adapted to any chaotic system, not just the Lorenz. What you need to do is replace the lorenz call in the ode45 with any chaotic system of your choice. Of course, you must first study the system to choose the appropriate plane of intersection for the system's trajectory.
An illustrative video explaining the bifurcation diagram can be found below.
A video explaining the code is available here:
An illustrative video for the continuation diagram can be found below.
References:
Citar como
Lazaros Moysis (2024). Bifurcation diagram for the Lorenz Chaotic system (https://www.mathworks.com/matlabcentral/fileexchange/156752-bifurcation-diagram-for-the-lorenz-chaotic-system), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2023b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Agradecimientos
Inspiración para: Bifurcation diagram for the Lorenz system (local maxima), Bifurcation diagram for the Rossler Chaotic system
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.