MATLAB functions for solving Lambert's problem
Versión 1.0.0 (565 KB) por
David Eagle
Three MATLAB functions and a script that demonstrates how to interact with each Lambert routine.
This archive contains three MATLAB functions ported from FORTRAN programs documented in Sam Wagner's PhD disseration,"Automated trajectory design for impulsive and low thrust interplanetary mission analysis", Iowa State, 2014.
Chapter 2 of Sam's research discusses the characteristics and practical computer implementation of Lambert algorithms due to Richard Battin, Robert Gooding and F. T. Sun.
The I/O arguments for each routine are identical. Here is the
format for the Battin function.
function [vi, vf] = lambert_battin(mu, r1, r2, dt, ot)
% this function contains the battin lambert solution method
% inputs
% mu = gravitational constant (kilometers^3/seconds^2)
% r1 = initial position vector (kilometers)
% r2 = final position vector (kilometers)
% dt = transfer time (seconds)
% ot = orbit type (1 = prograde, 2 = retrograde)
% outputs
% vi = initial velocity vector of transfer orbit (kilometers/second)
% vf = final velocity vector of transfer orbit (kilometers/second)
These functions attempt to solve Lambert's problem for the transfer orbit that completes less than one complete revolution of the central body. The direction of the transfer orbit can prograde or retrograde.
Citar como
David Eagle (2024). MATLAB functions for solving Lambert's problem (https://www.mathworks.com/matlabcentral/fileexchange/158221-matlab-functions-for-solving-lambert-s-problem), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2023b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0 |