Identify Arm Motions Using EMG Signals and Deep Learning.
Versión 1.0.0 (2,88 KB) por
BISHNU
This example employs sequence-to-sequence classification with an LSTM network to detect arm motions from EMG signals, achieving an 84% accu
This example employs sequence-to-sequence classification with an LSTM network to detect arm motions from EMG signals, achieving an 84% accuracy. Misclassifications primarily occurred between hand open and wrist extension, and hand close and wrist flexion, attributed to overlapping muscle activation patterns and electrode placement bias towards muscles involved in wrist flexion.
Citar como
BISHNU (2024). Identify Arm Motions Using EMG Signals and Deep Learning. (https://www.mathworks.com/matlabcentral/fileexchange/163161-identify-arm-motions-using-emg-signals-and-deep-learning), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2024a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Agradecimientos
Inspirado por: EMG Feature Extraction Toolbox, sEMG_Basic_Hand_movements
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0 |