Classification

CT Scan Image Preparation and Lung Cancer Classification
71 Descargas
Actualizado 8 may 2024

Classification

CT Scan Image Preparation and Lung Cancer Classification

MATLAB scripts that process and prepare DICOM files of Lung CT Scan Images into targeted [20x20x20] nodules. A filtering process for CNN training preparation follows this. The CNN scripts are also attached.

The DICOM images of lung cancer for CNN training are obtained from two sources:

The DICOM images of lung cancer for independent validation are obtained from one source:

The Main script will run ParenchymaSegment, NoduleSearch, and NoduleExtract functions, lung segmentation from DICOM images, searching nodules in the 3D domain, and extracting them into 20 x 20 x 20 dimensions.

NoduleSearch has filtering parameters in the FilterParam function. The cancer nodules are extracted manually from the extracted nodule files and then oversampled using an OverSampling script.

BatchPreps and Train scripts are for deep learning training. There are 5 CNN models available for training:

  • Modified U Network (MUNet)
  • Modified Double U Network (MDUNet)
  • Modified Segmentation Network (MSegNet)
  • Modified Deconvolutional Network (MDeConvNet)
  • Modified Residual Encoder-Decoder Network (MREDNet)
  • Modified Residual Network (MResNet)
  • Modified Residual Network with Transformation (MResNeXt)
  • Modified Efficient Network (MEffNet)

Citar como

Rudy Gunawan (2026). Classification (https://github.com/RudGunawan/Classification), GitHub. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2024a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
1.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.