Special Trans Function

Versión 1.0.0 (8,1 KB) por Gao
Calculates the analytical or numerical solution of Special Trans Function
6 Descargas
Actualizado 20 may 2024

Ver licencia

Special Trans Function (STF) is the exact analytical closed-form solution of transcendental equation:
Psi = U.*exp(-Psi) U(ζ)∈R+.
For the fixed variable x, STF takes the form of analytic expression:
Psi(x,U) = U.*(symsum((U.^n.*(x-n).^n)/factorial(n),n,[0 floor(x)]))./symsum((U.^n.*(x+1-n).^n)/factorial(n),n,[0 floor(x+1)]);
Psi = STF(x,U) calculates the analytical solution of STF by invoking STF1.m (faster than symbolic/limit computation) or STF2.m (fastest).
Psi = STF(U) solves the numerical solution of STF by invoking STF3.
[Psi,xv,xs] = STF(U) invokes STF4.m to solve the numerical solution of STF and the vectorial STF brabch xv around start point xs.
Inputs:
- x: The STF branch, a non-negative scalar value within [0,20]. For double-precision arithmetic, the analytical solution of STF is exact when x∈[0,20] since factorial(n) is exact when n ≤ 21.
- U: A vector of non-negative numbers, U(ζ)∈[0,inf).
- options: defaultopts = struct('Solution','Analytical','Speed','fast'),
struct('Solution','Numerical','Speed','faster'),
Output:
- Psi: The analytical/numerical solution of STF.
- xv: The numerical solution of vectorial STF brabch around x
Example:
x = 2.5;
U = 0:10;
STF(U)
Psi = STF(U)
[Psi,xv] = STF(U)
STF(x, U)
Psi = STF(x, U)
[Psi,xv] = STF(x, U)
opts = struct('Solution','Analytical','Speed','fast');
STF(x, U, opts)
Psi = STF(x, U, opts)
[Psi,xv] = STF(x, U, opts)
opts = struct('Solution','Analytical','Speed','faster');
STF(x, U, opts)
Psi = STF(x, U, opts)
[Psi,xv] = STF(x, U, opts)
opts = struct('Solution','Numerical');
STF(x, U, opts)
Psi = STF(x, U, opts)
[Psi,xv] = STF(x, U, opts)
References:
[1] Perovich SM, Simic SK, Tosic D V, Bauk SI. On the analytical solution of some families of transcendental equations. Appl Math Lett 2007;20:493–8. https://doi.org/10.1016/j.aml.2006.06.008.
Author: Xiankun Gao, gaoxiankun78@163.com

Citar como

Gao (2026). Special Trans Function (https://es.mathworks.com/matlabcentral/fileexchange/166141-special-trans-function), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2021b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas
Versión Publicado Notas de la versión
1.0.0