Explainable Neural Network Regression Model with SHAP
                    Versión 1.0.1 (496 KB) por  
                  Mita
                
                
                  Radial Basis Function Neural Network training include 5-fold cross-validation and SHAP analysis for explainable model
                
                  
              This MATLAB script implements an explainable neural network regression model using a Radial Basis Function Neural Network (RBFNN) to predict water flux in forward osmosis processes. The model utilizes operational parameters such as membrane area, feed and draw solution flow rates, and concentrations as input features for training. To enhance interpretability, SHapley Additive exPlanations (SHAP) are applied, allowing users to gain insights into the contribution of each parameter to the model's predictions. This tool provides a powerful solution for researchers and engineers looking to develop accurate and transparent regression models while leveraging the flexibility of RBFNNs for optimizing forward osmosis system performance.
Citar como
Mita (2025). Explainable Neural Network Regression Model with SHAP (https://es.mathworks.com/matlabcentral/fileexchange/174170-explainable-neural-network-regression-model-with-shap), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
              Se creó con
              R2024a
            
            
              Compatible con cualquier versión desde R2024a hasta R2024b
            
          Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
