Raman Effect-Inspired Optimization Algorithm (REO)

complex objective function is tested
8 Descargas
Actualizado 11 nov 2024

Ver licencia

Explanation of the Code:
  1. Initialization:
  • The algorithm initializes numPhotons potential solutions randomly within the defined bounds.
  • It evaluates the initial fitness of all solutions and identifies the best one.
  1. Scattering Events:
  • For each photon (solution), the algorithm performs a scattering event:
  • Stokes Shift (Exploration): A random, larger perturbation to explore new areas.
  • Anti-Stokes Shift (Exploitation): A smaller perturbation to refine and improve the solution locally.
  • The rand < 0.5 probability ensures a 50-50 chance between exploration and exploitation.
  1. Fitness Evaluation and Update:
  • If a newly generated solution improves the fitness, it replaces the current solution.
  • The global best solution is updated accordingly if the new solution outperforms the previous best.
  1. History and Visualization:
  • The history array records the best fitness value at each iteration for convergence analysis.
  • The final plot shows how the best fitness value evolves over the iterations.
Customization:
  • Objective Function: You can replace the example objFunction with your specific function.
  • Algorithm Parameters: Adjust numPhotons, maxIterations, lowerBound, and upperBound based on your problem's requirements.
  • Exploration and Exploitation: Modify the shiftFactor parameters to fine-tune the balance between exploration and exploitation.
Compatibilidad con la versión de MATLAB
Se creó con R2022b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0