Adaptive Memetic Binary Optimization (AMBO) Algorithm

A novel adaptive memetic binary optimization algorithm for feature selection
26 Descargas
Actualizado 25 jul 2025
AMBO: Adaptive Memetic Binary Optimization Algorithm for Feature Selection
This repository contains the official MATLAB implementation of the AMBO (Adaptive Memetic Binary Optimization) algorithm proposed in the paper:
A. C. Çınar, A novel adaptive memetic binary optimization algorithm for feature selection, Artificial Intelligence Review, 2023. DOI: 10.1007/s10462-023-10482-8
📌 About the Project
AMBO is a pure binary metaheuristic algorithm specifically designed for feature selection tasks. It uses:
  • Adaptive crossover mechanisms (single-point, double-point, uniform)
  • Canonical mutation
  • Logic gate-based local search using AND, OR, and XOR for balancing exploration and exploitation.
It has been tested on 21 benchmark datasets and outperformed several state-of-the-art algorithms including BPSO, GA variants, BDA, BSSA, and BGWO.
📂 Files
  • Main.m: Main script to run the algorithm.
  • datasets/: Sample datasets used in the paper.
  • results/: Contains output logs and performance results.
🧪 Requirements
  • MATLAB R2021a or later
  • Statistics and Machine Learning Toolbox (for KNN)
📈 Citation
If you use this code or data in your research, please cite the paper as:
@article{cinar2023ambo,
title={A novel adaptive memetic binary optimization algorithm for feature selection},
author={Cinar, Ahmet Cevahir},
journal={Artificial Intelligence Review},
year={2023},
doi={10.1007/s10462-023-10482-8}
}
🤝 Collaboration
Contributions, ideas, and collaborations are welcome!
Feel free to contact me for research partnerships, extensions, or comparative benchmarking:
🔗 LinkedIn: Ahmet Cevahir Çınar

Citar como

@article{cinar2023ambo, title={A novel adaptive memetic binary optimization algorithm for feature selection}, author={Cinar, Ahmet Cevahir}, journal={Artificial Intelligence Review}, year={2023}, doi={10.1007/s10462-023-10482-8} }

Compatibilidad con la versión de MATLAB
Se creó con R2025a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
1.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.