Impulse response invariant discretization of fractional order integrators/differe​ntiators

compute a discrete-time finite dimensional (z) transfer function to approximate s^r, r is real numbe
2,8K Descargas
Actualizado 5 sep 2008

Sin licencia

% Impulse response invariant discretization of fractional order
% integrators/differentiators
%
% irid_fod function is prepared to compute a discrete-time finite dimensional
% (z) transfer function to approximate a continuous irrational transfer
% function s^r, where "s" is the Laplace transform variable, and "r" is a
% real number in the range of (-1,1). s^r is called a fractional order
% differentiator if 0 < r < 1 and a fractional order integrator if -1 < r < 0.
%
% The proposed approximation keeps the impulse response "invariant"
%
% IN:
% r: the fractional order
% Ts: the sampling period
% norder: the finite order of the approximate z-transfer function
% (the orders of denominator and numerator z-polynomial are the same)
% OUT:
% sr: returns the LTI object that approximates the s^r in the sense
% of impulse response.
% TEST CODE
% dfod=irid_fod(-.5,.01,5);figure;pzmap(dfod)
%
% Reference: YangQuan Chen. "Impulse-invariant and step-invariant
% discretization of fractional order integrators and differentiators".
% August 2008. CSOIS AFC (Applied Fractional Calculus) Seminar.
% http://fractionalcalculus.googlepages.com/

Citar como

YangQuan Chen (2024). Impulse response invariant discretization of fractional order integrators/differentiators (https://www.mathworks.com/matlabcentral/fileexchange/21342-impulse-response-invariant-discretization-of-fractional-order-integrators-differentiators), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2007a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Dynamic System Models en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0