Image segmentation using Otsu thresholding

OTSU(I,N) segments the image I into N classes by means of Otsu's N-thresholding method.
20,1K Descargas
Actualizado 10 mar 2010

Ver licencia

IDX = OTSU(I,N) segments the image I into N classes by means of Otsu's N-thresholding method. OTSU returns an array IDX containing the cluster indices (from 1 to N) of each point.

IDX = OTSU(I) uses two classes (N=2, default value).

[IDX,sep] = OTSU(I,N) also returns the value (sep) of the separability criterion within the range [0 1]. Zero is obtained only with data having less than N values, whereas one (optimal value) is obtained only with N-valued arrays.

If I is an RGB image, a Karhunen-Loeve transform is first performed on the three R,G,B channels. The segmentation is then carried out on the image component that contains most of the energy.

Example:
---------
load clown
subplot(221)
X = ind2gray(X,map);
imshow(X)
title('Original','FontWeight','bold')
for n = 2:4
IDX = otsu(X,n);
subplot(2,2,n)
imagesc(IDX), axis image off
title(['n = ' int2str(n)],'FontWeight','bold')
end

------
See also:
http://www.biomecardio.com/matlab/otsu.html
-----

Citar como

Damien Garcia (2024). Image segmentation using Otsu thresholding (https://www.mathworks.com/matlabcentral/fileexchange/26532-image-segmentation-using-otsu-thresholding), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2007b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.4.0.0

Minor modifications

1.3.0.0

The segmentation for RGB image has been improved: a KLT is performed and we keep the component of highest energy.

1.2.0.0

RGB images are now analyzed in the gray, R, G and B scales.

1.1.0.0

New screenshot.

1.0.0.0