## Power Law, Exponential and Logarithmic Fit

Versión 1.5.0.0 (20.9 KB) por
Finds and plots the linear fit to some data points when plotted on a log scale.

13.8K descargas

Ver licencia

logfit(X,Y,graphType), where X is a vector and Y is a vector or a
matrix will plot the data with the axis scaling determined
by graphType as follows: graphType-> xscale, yscale
loglog-> log, log
logx -> log, linear
logy -> linear, log
linear -> linear, linear
A line is then fit to the scaled data in a least squares
sense.
See the 'notes' section below for help choosing a method.
logfit(X,Y), will search through all the possible axis scalings and
finish with the one that incurs the least error (with error
measured as least squares on the linear-linear data.)

Notes:
A power law relationship
[slope, intercept] = logfit(x,y,'loglog');
yApprox = (10^intercept)*x.^(slope);

An exponential relationship
[slope, intercept] = logfit(x,y,'logy');
yApprox = (10^intercept)*(10^slope).^x;

A logarithmic relationship
[slope, intercept] = logfit(x,y,'logx');
yApprox = (intercept)+(slope)*log10(x);

A linear relationship
[slope, intercept] = logfit(x,y,'linear');
yApprox = (intercept)+(slope)*x;

### Citar como

Jonathan C. Lansey (2023). Power Law, Exponential and Logarithmic Fit (https://www.mathworks.com/matlabcentral/fileexchange/29545-power-law-exponential-and-logarithmic-fit), MATLAB Central File Exchange. Recuperado .

##### Compatibilidad con la versión de MATLAB
Se creó con R2010b
Compatible con cualquier versión
Windows macOS Linux
##### Categorías
Más información sobre Interpolation en Help Center y MATLAB Answers.

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.5.0.0

Added new color option which lets you set the 'color' of both lines and markers with one parameter. Added robustness to NaN values.

1.4.0.0

Updated to use R2 as 'best fit' criterion rather than MSE

1.3.0.0

fixed 'skipbegin' feature functionality

1.2.0.0

Updated to include Mean Squared Error

1.0.0.0