GPUCONV2

Example, Matlab R2010B Cuda CONV2 on GPU using Cuda kernels
1,6K Descargas
Actualizado 8 dic 2010

Ver licencia

GPUCONV2 Two dimensional convolution on the GPU using Cuda.

C = GPUCONV2(A, B) performs the 2-D convolution of matrices A and B.
If [ma,na] = size(A), [mb,nb] = size(B), and [mc,nc] = size(C), then
mc = max([ma+mb-1,ma,mb]) and nc = max([na+nb-1,na,nb]).

C = GPUCONV2(A, B, SHAPE) returns a subsection of the 2-D
convolution with size specified by SHAPE:
'full' - (default) returns the full 2-D convolution,
'same' - returns the central part of the convolution
that is the same size as A.
'valid' - returns only those parts of the convolution
that are computed without the zero-padded edges.
size(C) = max([ma-max(0,mb-1),na-max(0,nb-1)],0).

Note!
This function depends on two Cuda kernel files
conv2_float.cu and conv2_double.cu which needs to be compiled
to .ptx files using the nvcc compiler.

See also CONV2, NVCC

Example,
Load an image
I=im2double(imread('moon.tif'));
Create a Gaussian filtering kernel
H = fspecial('gaussian',[20 20],3);
Perform the convolution on the CPU
J = conv2(I,H);
Perform the convolution on the GPU
Jcuda = gpuconv2(I,H);
Show the results
figure,
imshow(J,[]); title('CPU filtering');
imshow(Jcuda,[]); title('GPU filtering');
imshow(Jcuda-J,[]); title('Difference');

Citar como

Dirk-Jan Kroon (2024). GPUCONV2 (https://www.mathworks.com/matlabcentral/fileexchange/29648-gpuconv2), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2010b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0