thresholding the maximum entropy

Maximum entropy thresholding is the maximization of information between object and background.
2,9K Descargas
Actualizado 20 feb 2012

Ver licencia

Maximum entropy thresholding is based on the maximization of the information measure between object and background.

let C1 and C2 two classes for the object and the background respectively; the maximum entropy measure can be calculated :

hC1(t)= - sum (pi/pC1)*log(pi/pC1) for i<=t
hC2(t)= - sum (pi/pC2)*log(pi/pC2) for i>t

pC1=sum pi i<=t and pC2=sum pi i>t

pC1+pC2=1 because the histogram is normalized

pi estimate the probability of the gray-level value "i"
pi=ni/N
where ni is the occurrence of the gray level "i" in the image.
ni is the histogram h(i)

Citar como

Fatma Gargouri (2025). thresholding the maximum entropy (https://es.mathworks.com/matlabcentral/fileexchange/35158-thresholding-the-maximum-entropy), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2010b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0