PSD (Power Spectral Density), and Amplitude Spectrum with adjusted FFT

FFT computes PSD and one sided amplitude spectrum Y[f] of 1d signal
5,8K Descargas
Actualizado 4 sep 2013

Ver licencia

Function [fy]=FFT(y,Fs)

1)computes the Power spectral density and Amplitude spectrum (P(f),F(f))
of 1d signal y(t) with sample rate Fs (Nyquist rate) which is known% apriori. The results are plotted in 3 figures which correspond to simple
PSD,logarithmic PSD (dB) and Amplitude Specturm respectively.
_____________
Ampitude(f) = \/ PSD(f)

2)The usefulness of this function is the adjustment of the frequency axis.

3)The fast Fourier transform is computed with Matlab built-in function
fft, but for signals whose lengths <1000 points, one can use the nested
function y=Fast_Fourier_Transform(X,N) .

Demo :

Fs=800;
Tf=2;
t=0:1/Fs:Tf;
f=[40 75];
Amp=[4.5 9.22];
sigma=1.33;
y=Amp(1)*exp(j*2*pi*t*f(1))
+Amp(2)*exp(j*2*pi*t*f(2));
N=(sigma/sqrt(2))* (randn(size(t))+j*randn(size(t)));
y=y+N;
figure, plot(t,y),xlabel('time (s)'),ylabel('Voltage (v)'),
title(strcat('Signal corrupted with AWGN, \sigma=',num2str(sigma))),
fy=FFT(y,Fs);

in the M-file Demo_FFT:
1st Part : we compute the spectrum of sinusoidal signal Y(t) with frequency Fc
2nd Part : FFT[Y²(t)]

The demo is adjusted with sample rate Fs>=4*Fc.

Citar como

Youssef Khmou (2024). PSD (Power Spectral Density), and Amplitude Spectrum with adjusted FFT (https://www.mathworks.com/matlabcentral/fileexchange/40002-psd-power-spectral-density-and-amplitude-spectrum-with-adjusted-fft), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2007a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.3.0.0

errata : figure 2 is changed from semilogy(Frequency, Power) to 10*log10(Frequency, 10*log10(Power)) in Decibel .

1.0.0.0