Auto-Correlation, Partial Auto-Correlation, Cross Correlation and Partial Cross Correlation Function

This allows evaluation of ACC, PACC, CCF, PCCF as the function of lags.
1,4K Descargas
Actualizado 23 ago 2013

Ver licencia

Time series analysis can be defined as prediction of future values of a random process given previous values. An important part of modelling is the decision of how many of the antecedent values should be used to predict the future. Auto-correlation function demonstrates the correlation coefficient between two series, original series and the lagged series. AC coefficients often die slowly. PACF determines the Correlation coefficient between original and lagged series given that the intermediate values are known. A note: These two should serve as the first step towards modelling. Please see readme for additional information and warranty.
For two processes, Cross-Crorrelation and Partial Cross correlations are added as well.

Citar como

Adel Fazel (2026). Auto-Correlation, Partial Auto-Correlation, Cross Correlation and Partial Cross Correlation Function (https://es.mathworks.com/matlabcentral/fileexchange/43172-auto-correlation-partial-auto-correlation-cross-correlation-and-partial-cross-correlation-function), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2012a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Conditional Mean Models en Help Center y MATLAB Answers.
Versión Publicado Notas de la versión
1.1.0.0

Cross-Correlation is added for enhanced functionality

1.0.0.0