Fast Chebyshev differentiation

Versión 1.2.0.0 (1,58 KB) por Matt
Fast computation of the first derivative of data located along Chebyshev points
327 Descargas
Actualizado 22 oct 2013

Ver licencia

fchd(V) computes the first derivative of the data in V located along the N+1 Chebyshev–Gauss–Lobatto points cos(pi*(0:N)/N).


Example 1:
Use FCHT to differentiate the function f(x) = tan(x) over [-1,1], and
compare with the exact derivate f'(x) = sec(x)^2.

x = cos(pi*(0:10)/10); % create sparse Chebyshev-spaced grid of 11 points
xx = linspace(-1,1); % create dense, linearly spaced grid
plot(xx,sec(xx).^2,x,fchd(tan(x))); % compare Chebyshev derivative to exact


Example 2:
To show the spectral convergence property of the Chebyshev derivative,
compute the error between the Chebyshev derivative and the exact
derivative of f(x) = tan(x) for several N.

N = 1:30;
err = zeros(1,length(N));

for n = N
x = cos(pi*(0:n)/n)'; % establish grid
err(n) = max(sec(x).^2 - fchd(tan(x))); % compute error
end

loglog(N,err); %display

Citar como

Matt (2026). Fast Chebyshev differentiation (https://es.mathworks.com/matlabcentral/fileexchange/44034-fast-chebyshev-differentiation), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2013a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Polynomials en Help Center y MATLAB Answers.
Versión Publicado Notas de la versión
1.2.0.0

made title match usual naming convention

1.0.0.0