h-coefficient
Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron’s actual response envelope. In a recent publication we developed a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. Please refer to the original publication for further information.
Citar como
Michael (2026). h-coefficient (https://es.mathworks.com/matlabcentral/fileexchange/48293-h-coefficient), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Agradecimientos
Inspirado por: Shade area between two curves, Kernel Density Estimator
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
h-coefficient V1.0/
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.2 | Minor bug fixes during launch phase... |
|
|
| 1.1.0.0 | Minor bug fixes during launch phase... |
|
|
| 1.0.0.0 |
|
