Feature selection with SVM-RFE

Versión 1.3.0.0 (5,42 KB) por Ke Yan
Support vector machine recursive feature elimination (SVM-RFE), with correlation bias reduction
5,3K Descargas
Actualizado 13 sep 2015

Ver licencia

SVM-RFE is a powerful feature selection algorithm in bioinformatics. It is a good choice to avoid overfitting when the number of features is high.
However, it may be biased when there are highly correlated features. We propose a "correlation bias reduction" strategy to handle it. See our paper (Yan et al., Feature selection and analysis on correlated gas sensor data with recursive feature elimination", 2015).
This file is an implementation of both our method and the original SVM-RFE, including the linear and RBF kernel. **LibSVM is needed**
Thanks to the SVM-KM and spider toolbox!

Citar como

Ke Yan (2025). Feature selection with SVM-RFE (https://es.mathworks.com/matlabcentral/fileexchange/50701-feature-selection-with-svm-rfe), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2010a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.3.0.0

1. remove "sv_indices" in function trainSVM older versions of libSVM don't have it
2. add a simple support for multi-class problems

1.2.0.0

fixed a bug: changed
if isempty(model) || model.nSV == 0
to
if isempty(model) || sum(model.nSV) == 0

1.1.0.0

revise description

1.0.0.0