Automatic Thresholding
Sin licencia
Dhanesh Ramachandram posted on same algorithm, march 2003.
This iterative technique for choosing a threshold was developed by Ridler and Calvard . The histogram is initially segmented into two parts using a starting threshold value such as 0 = 2B-1, half the maximum dynamic range.
The sample mean (mf,0) of the gray values associated with the foreground pixels and the sample mean (mb,0) of the gray values associated with the background pixels are computed. A new threshold value 1 is now computed as the average of these two sample means. The process is repeated, based upon the new threshold, until the threshold value does not change any more.
(quote from http://www.ph.tn.tudelft.nl/Courses/FIP/frames/fip-Segmenta.html)
New feature from the m-file of Dhanesh Ramachandram:
- one does not have to rescale one's image to a uint array. This algorithm works for negative intensities, for example.
Run:
vImage = Image(:);
[n xout]=hist(vImage, <nb_of_bins>);
threshold = isodata(n, xout)
You get a (hopefully relevant) threshold for your image.
Citar como
Gauthier Fleutot (2024). Automatic Thresholding (https://www.mathworks.com/matlabcentral/fileexchange/5389-automatic-thresholding), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Image Processing and Computer Vision > Image Processing Toolbox > Image Segmentation and Analysis > Image Segmentation > Image Thresholding >
Etiquetas
Agradecimientos
Inspirado por: Automatic Thresholding
Inspiración para: Ridler-Calvard image thresholding
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0.0 |