Non-crossing polynomial quantile regression
ncquantreg finds the coefficients of a polynomial p(x) of degree n that fits the data in vector x to the quantiles tau of y.
ncquantreg(x,y) performs median regression (tau = 0.5) using a polynomial of degree n=1.
ncquantreg(x,y,n,tau) fits numel(tau) polynomials with degree n. The algorithm uses a stepwise multiple quantile regression estimation using non-crossing constraints (Wu and Liu, 2009). The approach is stepwise in a sense that a quantile function is estimated so that it does not cross with a function fitted in a previous step. The algorithm starts from the middle quantile (i.e. the one closest to 0.5) and than progressivly works through the quantiles with increasing distance from the middle.
ncquantreg(x,y,n,tau,pn,pv,...) takes several parameter name value pairs that control the algorithm and plotting.
Reference
Wu, Y., Liu, Y., 2009. Stepwise multiple quantile regression estimation using non-crossing constraints. Statistics and its Interface 2, 299–310.
Citar como
Wolfgang Schwanghart (2024). Non-crossing polynomial quantile regression (https://github.com/wschwanghart/ncquantreg), GitHub. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- AI and Statistics > Statistics and Machine Learning Toolbox > Regression > Linear Regression >
- MATLAB > Mathematics > Elementary Math > Polynomials >
Etiquetas
Agradecimientos
Inspirado por: quantreg(x,y,tau,order,Nboot)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
No se pueden descargar versiones que utilicen la rama predeterminada de GitHub
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.1.0.0 | Changed title |
|
|
1.0.0.0 |