Weighted Essentially Non-Oscillatory (WENO) Scheme for Euler

A Fifth order WENO solver for the Euler system of equations
971 Descargas
Actualizado 30 ago 2018

Ver licencia

A one-dimensional implementation of 5th-order WENO scheme as introduced by

[1] Shu, Chi-Wang. "Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws." Advanced numerical approximation of nonlinear hyperbolic equations. Springer, Berlin, Heidelberg, 1998. 325-432.

and

[2] Jiang, Guang-Shan, and Cheng-chin Wu. "A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics." Journal of Computational Physics 150.2 (1999): 561-594. The present code is intended to be a guide to the implementation of the method.

It exemplifies the implementation of the component-wise reconstruction for finite-difference (FD) and finite-volume (FV) methods. In this update, I also include the characteristic-wise reconstruction in FV methodology.
As always, the philosophy behind this code is to be readable rather than efficient. Here, I dedicate this example to all the CFD students starting their path in numerical methods. Manuel A. Diaz (June 2018)

Citar como

Manuel A. Diaz (2024). Weighted Essentially Non-Oscillatory (WENO) Scheme for Euler (https://www.mathworks.com/matlabcentral/fileexchange/56905-weighted-essentially-non-oscillatory-weno-scheme-for-euler), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2013b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Numerical Integration and Differential Equations en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.1

Reformated the main script

1.0.0.0

The characteristic-wise reconstruction in FV methodology has been included in this new version.