kmeans_varpar(X,k)
Implementation of K-means with Variance Partitioning initialization. Variance Partitioning initialization is a deterministic way of initializing the data centroids, thus producing results that are repeatable and reproducible, without having to resort to tricks like seeding the pseudorandom number generator.
Citar como
Stefan Philippo Pszczolkowski Parraguez (2025). kmeans_varpar(X,k) (https://www.mathworks.com/matlabcentral/fileexchange/57229-kmeans_varpar-x-k), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- AI and Statistics > Statistics and Machine Learning Toolbox > Cluster Analysis and Anomaly Detection >
Etiquetas
Agradecimientos
Inspirado por: k-means++
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.1.0 | Removed loop that made sure that the number of returned centrers is equal to the specified k. This is arguably not necessary and since variance partitioning provides a deterministic result, there is potential for getting trapped in an infinite loop.
|
||
1.0.0.0 |