hagaygarty/mdCNN

MATLAB toolbox implementing Convolutional Neural Networks (CNN) for 2D and 3D inputs
3,6K Descargas
Actualizado 10 dic 2018

mdCNN is a Matlab framework for Convolutional Neural Network (CNN) supporting 1D, 2D and 3D kernels.
The network is Multidimensional, kernels are in 3D and convolution is done in 3D. It is suitable for volumetric input such as CT / MRI / video sections. But can also process 1d/2d images.
user-defined supports all the major features such as dropout, padding, stride, max pooling, L2 regularization, momentum, cross entropy/MSE, softmax, regression, classification and batch normalization layer.
The framework Its completely written in Matlab, no dependencies are needed. It is pretty optimized when training or testing all of the CPU cores are participating using Matlab Built-in Multi-threading.
There are several examples for training a network on MNIST, CIFAR10, 1D CNN, autoencoder for MNIST images, and 3dMNIST - a special enhancement of MNIST dataset to 3D volumes.
MNIST Demo will download the dataset and start the training process. It will reach 99.2% in several minutes. CIFAR10 demo reaches about 80% but it takes longer to converge.
For 3D volumes there is a demo file that will create a 3d volume from each digit in MNIST dataset, then starts training on the 28x28x28 samples. It will reach similar accuracy as in the 2d demo

This framework was used in a project classifying Vertebra in a 3D CT images.
=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~

To run MNIST demo: Go into the folder 'Demo/MNIST', Run 'demoMnist.m' file. After 15 iterations it will open a GUI where you can test the network performance. In addition layer 1 filters will be shown.

To run MNIST3D demo: Go into the folder 'Demo/MNIST3d', and run 'demoMnist3D.m' file.

=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~

Check the 'mdCNN documentation.docx' file for more specification on how to configure a network

For general questions regarding network design and training, please use this forum
https://groups.google.com/forum/#!forum/mdcnn-multidimensional-cnn-library-in-matlab

Any other issues you can contact me at hagaygarty@gmail.com

Please use Matlab 2016 and above

Citar como

Hagay Garty (2026). hagaygarty/mdCNN (https://github.com/hagaygarty/mdCNN), GitHub. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2015a
Compatible con cualquier versión desde R2016a
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Recognition, Object Detection, and Semantic Segmentation en Help Center y MATLAB Answers.

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
2.2.0.0

regression support

2.0.0.0

Version 2, add batchNorm/user-defined regression layers

1.0.0.0

updated description
typo
.
add 1d demo
Description update
update description
typos

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.