Lagrange interpolation polynomial fitting with MATLAB

Lagrange interpolation polynomial fitting
652 Descargas
Actualizado 23 mar 2023

Ver licencia

Lagrange interpolation polynomial fitting a set of points LAGRANG(X,Y,N,XX) where X and Y are row vector defining a set of N points uses Lagrange's method to find the N th order polynomial in X that passes through these points.
This program calculates and plots the Lagrange interpolation polynomial for a given set of data points. The Lagrange interpolation is a method to find an (n-1)th order polynomial that passes through n data points (x, y).
The input parameters for the program are:
  1. x: A row vector containing the x-coordinates of the data points.
  2. y: A row vector containing the y-coordinates of the data points.
  3. n: The number of data points.
  4. xx: A specific x-value to evaluate the interpolation polynomial.

Citar como

Tamir Suliman (2024). Lagrange interpolation polynomial fitting with MATLAB (https://www.mathworks.com/matlabcentral/fileexchange/60686-lagrange-interpolation-polynomial-fitting-with-matlab), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2016b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Polynomials en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Lagrang

Versión Publicado Notas de la versión
1.1.0.0

* Moved the function description to the first line as a comment block.
* Added semicolons to suppress unnecessary output.
* Used 'ro' and 'b-' in the plot function to distinguish the original points

1.0.0.0

updated figure
comments section