SVM using various Kernels
Refer: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods by Nello Cristianini and John Shawe-Taylor]
The training algorithm only depend on the data through dot products in H, i.e. on functions of the form Φ(x_i)·Φ(x_j). Now if there were a “kernel function” K such that
K(x_i,x_j) = Φ(x_i)·Φ(x_j),
we would only need to use K in the training algorithm, and would never need to explicitly even know what Φ is. One example is radial basis functions (RBF) or gaussian kernels where, H is infinite dimensional, so it would not be very easy to work with Φ explicitly.
Training the model requires the choice of:
• the kernel function, that determines the shape of the decision surface
• parameters in the kernel function (eg: for gaussian kernel:variance of the Gaussian, for polynomial kernel: degree of the polynomial)
• the regularization parameter λ.
Citar como
Bhartendu (2024). SVM using various Kernels (https://www.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0.0 |