SMO (Sequential Minimal Optimization)

Versión 1.0.0.0 (75,4 KB) por Bhartendu
Sequential Minimal Optimization (Simplified SMO) for SVM classification using Linear Kernel
1,3K Descargas
Actualizado 24 may 2017

Ver licencia

Reference: http://cs229.stanford.edu/materials/smo.pdf
*This demo is the implementation of the Algorithm in above-mentioned reference.
SMO:
If we want to allow a variable threshold the updates must be made on a pair of data points, an approach that results in the SMO algorithm. The rate of convergence of the algorithm is strongly affected by the order in which the data points are chosen for updating. Heuristic measures such as the degree of violation of the KKT conditions can be used to ensure very effective convergence rates in practice.

Refer to: Platt, John. Fast Training of Support Vector Machines using Sequential Minimal Optimization,
in Advances in Kernel Methods – Support Vector Learning, B. Scholkopf, C. Burges,
A. Smola, eds., MIT Press (1998).

Citar como

Bhartendu (2024). SMO (Sequential Minimal Optimization) (https://www.mathworks.com/matlabcentral/fileexchange/63100-smo-sequential-minimal-optimization), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2016a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0