Kernel PCA
Refer to 6.2.1 KPCA, Kernel Methods for Pattern Analysis, John Shawe-Taylor University of Southampton, Nello Cristianini University of California at Davis
Refer to 6.2.2 Kernel Ridge Regression, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Nello Cristianini and John Shawe-Taylor
Kernel PCA:
Kernel PCA is the application of PCA in a kernel-defined feature space making use of the dual representation.
http://pca.narod.ru/scholkopf_kernel.pdf
Reference: (for SVR) https://in.mathworks.com/matlabcentral/fileexchange/63060-support-vector-regression Reference: (for Ridge regression)https://in.mathworks.com/matlabcentral/fileexchange/63122-kernel-ridge-regression
Citar como
Bhartendu (2024). Kernel PCA (https://www.mathworks.com/matlabcentral/fileexchange/63130-kernel-pca), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0.0 |