PixelClassifier

A single-layer Random Forest model for pixel classification (image segmentation).
806 Descargas
Actualizado 23 feb 2018

This code is based on
https://github.com/HMS-IDAC/MLRFS
and
https://github.com/HMS-IDAC/MLRFSwCF
The main differences are:
> Only one Random Forest layer is implemented. This makes the model simpler to understand and faster to train/test.
> More feature options are available, notably steerable and log filters. This makes it useful for a wider range or problems (e.g. filament and point source detection).
> Parallel processing is implemented, both during training and segmentation. This makes it significantly faster to train/execute.

The main scripts are:
pixelClassifierTrain, used to train the model, and
pixelClassifier, used to segment images after the model is trained.
See those files for details and parameters to set.

Labels/annotations can be created with ImageAnnotationBot, available at https://www.mathworks.com/matlabcentral/fileexchange/64719-imageannotationbot

A sample dataset for a running demo is available at https://www.dropbox.com/s/hl6jvwyea9vwh50/DataForPC.zip?dl=0

This code uses 2-D steerable filters for feature detection, developed by Francois Aguet, available at http://www.francoisaguet.net/software.html

Developed by:
Marcelo Cicconet
marceloc.net

Citar como

Marcelo Cicconet (2026). PixelClassifier (https://github.com/HMS-IDAC/PixelClassifier), GitHub. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2017a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
1.0.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.